2020, Número 1
<< Anterior
Arch Neurocien 2020; 25 (1)
Actualización sobre la anatomía funcional de la vía motora en seres humanos
Marín-Castro MJ, Guerra-Espinosa V, Neira-Gómez JP, Carvajal-Fernández J, Suárez-Escudero JC
Idioma: Español
Referencias bibliográficas: 52
Paginas: 38-50
Archivo PDF: 428.53 Kb.
RESUMEN
Introducción: la vía piramidal o Tracto Corticoespinal (TCE) es un reto para la enseñanza y
aprendizaje, tanto para estudiantes como para profesionales del área de la salud. Conocer
su origen y conformación permite comprender su rol no solo en las manifestaciones
neurológicas y clínicas de los diferentes síndromes neurológicos, sino también su papel en
los procesos de rehabilitación sensitivo-motora.
Objetivo: realizar una revisión narrativa de la anatomía funcional de la vía motora en seres
humanos.
Desarrollo: desde las primeras descripciones neurofisiológicas en el siglo XIX, se ha
evolucionado considerablemente en la compresión que se tiene del TCE. Actualmente se sabe
que es el principal sistema eferente encargado de la ejecución de movimientos voluntarios
que requieren precisión, ajuste y destreza, principalmente en las regiones distales de
miembros superiores. Se origina en la corteza cerebral, desde donde las neuronas motoras
se proyectan para establecer sinapsis con los núcleos motores de los pares craneales en el
tallo y con las motoneuronas inferiores en la asta anterior de la médula espinal. Sus lesiones
dan origen al síndrome de motoneurona superior, cuya presentación clínica depende del
punto del recorrido donde ocurra el daño.
Conclusión: la tecnología actual ha permitido ampliar el conocimiento que se tiene del
TCE, lo que ha permitido conocer más específicamente su conformación y funcionamiento,
y su importancia clínica tanto en el síndrome de motoneurona superior como en la
neurorrehabilitación.
REFERENCIAS (EN ESTE ARTÍCULO)
Jang S. The corticospinal tract from the viewpoint of brain rehabilitation. J Rehabil Med. 2014; 46(3):193–9. DOI: 10.2340/16501977-1782
Welniarz Q, Dusart I, Roze E. The corticospinal tract: Evolution, development, and human disorders: corticospinal tract human disorders. Dev Neurobiol. 2017; 77(7):810–29. DOI: 10.1002/dneu.22455
Zilles K, Schlaug G, Matelli M, Luppino G, Schleicher A, Qü M, Dabringhaus A, Seitz R, Roland PE. Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. J Anat. 1995; 187 ( Pt 3):515-37.
Newton JM, Ward NS, Parker GJM, Deichmann R, Alexander DC, Friston KJ, et al. Non-invasive mapping of corticofugal fibres from multiple motor areas—relevance to stroke recovery. Brain. 2006; 129(7):1844–58. DOI: 10.1093/brain/awl106
Kumar A, Juhasz C, Asano E, Sundaram SK, Makki MI, Chugani DC, et al. Diffusion tensor imaging study of the cortical origin and course of the corticospinal Tract in healthy children. Am J neuroradiol. 2009; 30(10):1963– 70. doi:10.3174/ajnr.A1742
Seo JP, Jang SH. Different characteristics of the corticospinal tract according to the cerebral origin: DTI Study. Am J Neuroradiol. 2013; 34(7):1359–63. DOI: 10.3174/ajnr.A3389
Gross CG. The discovery of motor cortex and its background. J Hist Neurosci. 2007; 16(3):320–31.
Chouinard PA, Paus T. The primary motor and premotor areas of the human cerebral cortex. The Neuroscientist. 2006; 12(2):143–52. DOI: 10.1177/1073858405284255
Wiesendanger M. Postlesion recovery of motor and sensory cortex in the early twentieth century. J Hist Neurosci. 2011; 20(1):42–57.
Snell RS. Neuroanatomía clínica. Buenos Aires: Editorial Médica Panamericana; 2009.
DeFelipe J, Fariñas I. The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol. 1992; 39(6):563–607. DOI:10.1016/0301-0082(92)90015-7
Garey LJ. Broadmannś localisation in the cerebral cortex. London: Smith-Gordon; 1994.
Fulton, J . “A note on the definition of the “motor” and “premotor” areas”. Brain 1935. 58(2): 311–31.
Penfield W, Boldrey E. Somatic Motor and Sensory Representation in the Cerebral Cortex of Man as Studied by Electrical Stimulation. Brain. 1937; 60(4):389–443. doi.org/10.1093/brain/60.4.389
Becker RF. The cerebral cortex of man. By Wilder Penfield and Theodore Rasmussen. The Macmillan Company, New York, N.Y. 1950. 248 pp. Am J Phys Anthropol. 1953; 11(3):441–4. doi.org/10.1002/ajpa.1330110318
Dum R, Strick P. The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci. 1991 Mar 1; 11(3):667–89.
Bustamante B, Jairo. Neuroanatomía funcional y clínica: Atlas del sistema nervioso central. Bogotá (Colombia): Celsus; 2001.
García-Porrero JA, Hurlé JM. Anatomía humana. Aravaca, Madrid: McGraw-Hill/Interamericana de España; 2012.
Lemon RN. Descending Pathways in Motor Control. Annu Rev Neurosci. 2008; 31(1):195–218. DOI: 10.1146/annurev.neuro.31.060407.125547
Jane JA, Yashon D, DeMyer W, Bucy PC. The contribution of the precentral gyrus to the pyramidal tract of man. J Neurosurg. 1967; 26(2):244–8. DOI: 10.3171/jns.1967.26.2.0244
Cano de la Cuerda R, Martínez Piédrola RM, Miangolarra Page JC. Control y aprendizaje motor: fundamentos, desarrollo y reeducación del movimiento humano. Madrid: Editorial Médica Panamericana; 2017.
Wycoco V, Shroff M, Sudhakar S, Lee W. White Matter Anatomy. Neuroimaging Clin N Am. 2013; 23(2):197–216. DOI: 10.1016/j.nic.2012.12.002
Brazis PW, Masdeu JC, Biller J. Localization in clinical neurology. 6th ed. Philadelphia: Wolters Kluwer Health/ Lippincott Williams & Wilkins; 2011. 657 p.
Chen YJ, Nabavizadeh SA, Vossough A, Kumar S, Loevner LA, Mohan S. Wallerian Degeneration Beyond the Corticospinal Tracts: Conventional and Advanced MRI Findings: Wallerian Degeneration: Conventional & Advanced MRI Findings. J Neuroimaging. 2017; 27(3):272–80. DOI: 10.1111/jon.12404
Masri OA. An Essay on the Human Corticospinal Tract: History, Development, Anatomy, and Connections. Neuroanatomy. 2011; 10: 1–4.
Donkelaar HJ, Lammens M, Wesseling P, Hori A, Keyser A, Rotteveel J. Development and malformations of the human pyramidal tract. J Neurol. 2004; 251(12):1429–42. DOI: 10.1007/s00415-004-0653-3
Canty AJ, Murphy M. Molecular mechanisms of axon guidance in the developing corticospinal tract. Prog Neurobiol. 2008; 85(2):214–35. DOI: 10.1016/j.pneurobio.2008.02.001
Martin JH. The Corticospinal System: From Development to Motor Control. The Neuroscientist. 2005; 11(2):161–73. DOI: 10.1177/1073858404270843
Eyre JA, Miller S, Clowry GJ, Conway EA, Watts C. Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres. Brain. 2000; 123(1):51– 64. DOI: 10.1093/brain/123.1.51
Yamada K, Kizu O, Kubota T, Ito H, Matsushima S, Oouchi H, et al. The pyramidal tract has a predictable course through the centrum semiovale: A diffusion-tensor based tractography study. J Magn Reson Imaging. 2007; 26(3):519–24. DOI: 10.1002/jmri.21006
Holodny AI. Diffusion tensor tractography of the motor white matter tracts in man: current controversies and future directions. Ann N Y Acad Sci. 2005; 1064(1):88–97. DOI: 10.1196/annals.1340.016
Song Y-M. Somatotopic organization of motor fibers in the corona radiata in monoparetic patients with small subcortical infarct. Stroke. 2007; 38(8):2353–5. DOI: 10.1161/STROKEAHA.106.480632
Kim Y-H, Kim D-S, Hong JH, Park CH, Hua N, Bickart KC, et al. Corticospinal tract location in internal capsule of human brain: di¡usion tensor tractography and functional MRI study. :4. DOI: 10.1097/WNR.0b013e328300a086
Han BS, Hong JH, Hong C, Yeo SS, Lee D hoon, Cho HK, et al. Location of the corticospinal tract at the corona radiata in human brain. Brain Res. 2010; 1326:75–80. DOI: 10.1016/j.brainres.2010.02.050
Park JK, Kim BS, Choi G, Kim SH, Choi JC, Khang H. Evaluation of the somatotopic organization of corticospinal tracts in the internal capsule and cerebral peduncle: results of diffusion-tensor MR tractography. Korean J Radiol. 2008; 9(3):191. DOI: 10.3348/kjr.2008.9.3.191
Waragai M, Watanabe H, Iwabuchi S. The somatotopic localisation of the descending cortical tract in the cerebral peduncle: a study using MRI of changes following Wallerian degeneration in the cerebral peduncle after a supratentorial vascular lesion. Neuroradiology. 1994; 36(5):402–4. DOI: 10.1007/bf00612128
Verstynen T, Jarbo K, Pathak S, Schneider W. In Vivo mapping of microstructural somatotopies in the human corticospinal pathways. J Neurophysiol. 2011; 105(1):336–46. DOI: 10.1152/jn.00698.2010
Kwon HG, Hong JH, Jang SH. Anatomic location and somatotopic arrangement of the corticospinal tract at the cerebral peduncle in the human brain. Am J Neuroradiol. 2011; 32(11):2116–9. DOI: 10.3174/ajnr.A2660
Hong JH, Son SM, Jang SH. Somatotopic location of corticospinal tract at pons in human brain: A diffusion tensor tractography study. NeuroImage. 2010; 51(3):952–5. DOI: 10.1016/j.neuroimage.2010.02.063
Kaneko K, Kawai S, Taguchi T, Fuchigami Y, Morita H, Ofuji A, et al. Spatial distribution of corticospinal potentials following transcranial electric and magnetic stimulation in human spinal cord. J Neurol Sci. 1997; 151(2):217– 21. doi.org/10.1152/jn.00554.2019
Nathan PW, Smith MC, Deacon P. The corticospinal tracts in man: course and location of fibres at different segmental levels. Brain. 1990; 113(2):303–24. DOI: 10.1093/brain/113.2.303
Brinkman J, Kuypers HGJM. Cerebral control of contralateral and ipsilateral arm, hand and finger movements in the split-brain rhesus monkey. Brain. 1973; 96(4):653–74. DOI: 10.1093/brain/96.4.653
Davidoff, MD RA. The pyramidal tract. Neurology. 1990; 40(2):332–332. DOI: 10.1212/wnl.40.2.332
Vulliemoz S, Raineteau O, Jabaudon D. Reaching beyond the midline: why are human brains cross wired? Lancet Neurol. 2005; 4(2):87–99. DOI: 10.1016/S1474-4422(05)00990-7
Lacroix S, Havton LA, McKay H, Yang H, Brant A, Roberts J, et al. Bilateral corticospinal projections arise from each motor cortex in the macaque monkey: A quantitative study. J Comp Neurol. 2004; 473(2):147–61. DOI: 10.1002/cne.20051
Haines DE, Mihailoff GA, editors. Fundamental neuroscience for basic and clinical applications. Fifth edition. Philadelphia, PA: Elsevier; 2018. 516 p.
Bradley D. The Physiology of Excitable Cells, 4th edn. By DAVID J. AIDLEY. Cambridge: Cambridge University Press. 1998. J Anat. 1999; 195(2):315–7. doi: 10.1046/j.1469-7580.1999.195203154.x
Sepúlveda P, Bacco JL, Cubillos A, Doussoulin A. Espasticidad como signo positivo de daño de motoneurona superior y su importancia en rehabilitación. Ces Med. 2018 Dec;32(3):259–69. DOI: http://dx.doi.org/10.21615/ cesmedicina.32.3.7
Bähr M, Frotscher M. Duus’ topical diagnosis in neurology: anatomy, physiology, signs, symptoms. 5th ed. Stuttgart New York, NY: Thieme; 2012. 333 p.
Li S. Spasticity, Motor recovery, and neural plasticity after stroke. front Neurol [Internet]. 2017. http://journal. frontiersin.org/article/10.3389/fneur.2017.00120/full
Nielsen JB, Crone C, Hultborn H. The spinal pathophysiology of spasticity--from a basic science point of view. Acta Physiol Oxf Engl. 2007 Feb;189(2):171–80. DOI: 10.1111/j.1748-1716.2006.01652.x
Najafi MR, Chitsaz A, Najafi MA. Jacksonian seizure as the relapse symptom of multiple sclerosis. J Res Med Sci Off J Isfahan Univ Med Sci. 2013; 18(Suppl 1):S89-92.