2003, Número 3
<< Anterior Siguiente >>
Arch Cardiol Mex 2003; 73 (3)
Cambios en el metabolismo cardíaco y su posible aprovechamiento en la terapéutica (Parte I)
R Carbó, V Guarner
Idioma: Español
Referencias bibliográficas: 62
Paginas: 218-229
Archivo PDF: 111.05 Kb.
RESUMEN
El propósito de esta revisión es analizar las diferentes rutas metabólicas
utilizadas por el corazón en momentos del desarrollo y situaciones como
la hipoxia y la enfermedad, para tratar de comprenderlas y utilizarlas para
restablecer las condiciones normales en células que se encuentran
comprometidas durante un infarto.
REFERENCIAS (EN ESTE ARTÍCULO)
Tripp ME: Developmental cardiac metabolism in health and disease. Pediatr Cardiol 1989; 10: 150-158.
Battaglia FC, Meschia G: An Introduction to fetal physiology. New York: Academic Press, 1986.
Neely JR, Rovetto MJ, Oram JF: Myocardial utilization of carbohydrate and lipids. Prog Cardiovasc Dis 1972; 15: 289-329.
Neely JR, Morgan HE: Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 1974; 36: 413-459.
Bing RJ: Cardiac metabolism. Physiol Rev 1965; 45: 171-213.
Lopaschuk GD, Stanley WC: Manipulation of energy metabolism in the heart. Science and Med 1997; 6: 43-51.
Boutilier RG: Mechanisms of cell survival in hypoxia and hypothermia. J Exp Biol 2001; 204: 3171-3181.
Stryer L: Bioquímica. 3a Edición. Barcelona. Reverté, 1990; 2: 355-475.
Lehinger LA: Bioquímica. 2a Edición. Barcelona. Omega, 1982: 427-452.
England PJ, Randle PJ: Effectors of rat-heart hexokinases and the control of rates of glucose phosphorylation in the perfused rat heart. Biochem J 1967; 105: 907-920.
Depre C, Vanoverschelde JLJ, Taegtmeyer H: Glucose for the heart. Circulation 1999; 99: 578-588.
King LM, Opie LH: Glucose and glycogen utilisation in myocardial ischemia-Changes in metabolism and consequences for the myocytes. Mol Cell Biochem 1998; 180: 3-26.
Calvani M, Reda E, Arrigoni-Martelli E: Regulation by carnitine of myocardial fatty acid and carbohydrate metabolism under normal and pathological conditions. Basic Res Cardiol 2000; 95: 75-83.
Opie LH: Substrate utilization and glycolysis in the heart. Cardiology (1971/72); 56: 2-21.
Elbrink J, Bihler I: Membrane transport: its relation to cellular metabolic rates. Science 1975; 188: 1177-1184.
Liu MS, Spitzer JJ: Oxidation of palmitate and lactate by beating myocytes isolated from adult dog hearts. J Molec Cell Cardiol 1978; 10: 415-426.
Kao RL, Christman EW, Luh SL, Krauhs JM, Tyers GFO, Williams EH: The effects of insulin and anoxia in the metabolism of isolated mature rat cardiac myocytes. Arch Biochem Biophys 1980; 203: 587-590.
Stanley WC, Lopaschuk GD, Hall JL, McCormack JG: Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc Res 1997; 33: 243-257.
Guyton AC, Hall JE: Tratado de Fisiología Médica. México. Editorial Interamericana, Mc Graw Hill, Novena Edición 1997.
Macleod TF, Prasad K: Influence of glucose on the transmembrane action potential of papillary muscle. J Gen Physiol 1972; 53: 792-815.
Hoerter J: Changes in the sensitivity to hypoxia and glucose deprivation in the isolated perfused rabbit heart during perinatal development. Pfleugers Arch 1976; 363: 1-6.
Mcdonald TF, Macleod DP: Effects of manganese, glucose and isoprenaline on the axion potential of anoxic ventricular muscle. Naunyn Schmiedebergs Arch Pharmacol 1972; 275: 169-181.
Gennser G: Influence of hypoxia and glucose on the contractility of papillary muscles from adult and neonatal rabbits. Biol Neonate 1972; 21: 90-106.
De Micheli A: Trayectoria de la eletrovectocardiografía mexicana. Arch Inst Cardiol Mex 1993; 63: 259-266.
Weinberg JM, Venkatachalam MA, Roeser NF, Nissim I: Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proc Natl Acad 2000; 97(6): 2826-2831.
Budinger GRS Duranteau J, Chandel NS, Schumacker PT: Hibernation during hypoxia in cardiomyocytes. Role of mitochondria as the O2 sensor. J Biol Chem 1998; 273(6): 3320-3326.
Kameyama M, Kakei M, Sato R, Shibasaki T, Matsuda H, Irisawa H: Intracellular Na+ activates a K+ channel in mammalian cardiac cells. Nature 1989; 309: 354-356.
Shimoni Y, Light PE, French RJ: Altered ATP sensitivity of ATP-dependent K+ channels in diabetic rat hearts. Am J Physiol 1998; 275 (Endocrinol Metab 38): E568-E576.
Irisawa H, Kokubun S: Modulation by intracellular ATP and cyclic AMP of the slow inward currents isolated single ventricular cells of the guinea-pig. J Physiol 1983; 338: 321-337.
Shahbudin H, Rahimtoola MB: Concept and evaluation of hibernating myocardium. Ann Rev Med 1999; 50: 75-86.
Thomassen A, Bagger JP, Nielson TT, Henningsen P: Altered global substrate preference at rest and during pacing in coronary artery disease with stable angina pectoris. Am J Cardiol 1988; 62: 686-693.
Neely JR, Rovetto MJ, Whitmer JT, Morgan HE: Effects of ischemia on function and metabolism of the isolated working heart. Am J Physiol 1973; 225: 651-658.
Rovetto MJ, Lamberton WF, Neely JR: Mechanisms of glycolytic inhibition in ischemic rat hearts. Circ Res 1975; 37: 742-751.
Opie LH, Owen P: Effect of glucose-insulin-potassium infusions as arteriovenous differences of glucose and of free fatty acids and on tissue metabolic changes in dogs with developing myocardial infarction. Am J Cardiol 1976; 38: 310-321.
Camici P, Araujo LI, Spinks T, Lammertsma A, Kaski JC, Shea MJ, et al: Increased uptake of 18F-fluorodeoxyglucose in postischemic myocardium of patients with exercise-induced angina. Circulation 1986; 74: 81-88.
Vanoverschelde Jl, Wijns W, Borgers M, Heyndricks G, Depré C, Flameng W, Melin JA: Chronic myocardial hibernation in humans. Circulation 1997; 95: 1961-1971.
Driedzic WR, Sidell BD, Stowe D, Branscombe R: Matching of vertebrate cardiac energy demand to energy metabolism. Am J Physiol 1987; 252: R930-R937.
Dunn JF, Hochachka PW, Davidson W, Guppie M: Metabolic adjustments to diving and recovery in the African lungfish. Am J Physiol 1983; 245: R651-R657.
Kelly DA, Storey KB: Organ-specific control of glycolysis in anoxic turtles. Am J Physiol 1988; 255: R774-R779.
Suarez RK, Brown GS, Hochachka PW: Metabolic sources of energy for hummingbird flight. Am J Physiol 1986; 251: R537-R542.
Murphy B, Zapol WM, Hochachka PW: Metabolic activities of heart, lung and brain during diving and recovery in the Weddell seal. J Appl Physiol 1980; 48: 596-605.
Bing OHL, Brooks WW, Inamdar AN, Messer JV: Tolerance of isolated heart muscle to hypoxia: turtle vs rat. Am J Physiol 1972; 223: 1481-1485.
Foa PP, Melli M, Berger CK, Billinger D, Guidotti GG: Action of insulin on chick embryo heart. Fed Proc 1965; 24: 1046-1050.
Jackson BT, Piasecki GJ, Cohn HE, Cohen WR: Control of fetal insulin secretion. Am J Physiol 2000; APStracts 7: 0350R.
Guarner V, Hernández EH, Moreno SJ, Huerto R, Gorostiza P, Valenzuela F: Regulation by glucose availability of tension development and electrical activity in fetal and neonatal rat hearts. Biol Neonate 1994; 66: 221-229.
Wittles B, Bressler R: Lipid metabolism in the newborn heart. J Clin Invest 1965; 44: 1639-1646.
Breuer E, Barta E, Pappova E, Zlatos L: Developmental changes of myocardial metabolism. I. Peculiarities of cardiac carbohydrate metabolism in the early post-natal period in dogs. Biol Neonate 1967; 11: 367-377.
Breuer E, Barta E, Zlatos L, Pappova E: Developmental changes of myocardial metabolism. II. Myocardial metabolism of fatty acids in the early postnatal period in dogs. Biol Neonate 1968; 12: 54-64.
Barrie SE, Harris P: Myocardial enzyme activities in guinea pigs during development. Am J Physiol 1977; 233: H707-H710.
Guarner V, Alvarez-Bylla R: Developmental changes in blood glucose and tissue carbohydrates in the fetal rat: Effects of insulin and adrenaline. Apptla 1992; 42: 51-59.
Guarner V, Contreras K, Carbó R: Effect of glucose acid availability on neonatal and adult heart contractility. Biol Neonate 2002; 82: 39-45.
Warshaw JB, Terry ML: Cellular energy metabolism during fetal development. II. Fatty acid oxidation by the developing heart. J Cell Biol 1970; 44: 354-360.
Fisher DJ, Heymann MA, Rudolph AM: Myocardial oxygen and carbohydrate consumption in fetal lambs in uterus and in adult sheep. Am J Physiol 1980; 238(Heart Circ Physiol 7): H399-H405.
Budinger GR, Chandel N, Shao ZH, Li CQ, Melmed A, Becker LB, Schumacker PT: Cellular energy utilization and supply during hypoxia in embryonic cardiac myocytes. Am J Physiol 1996; 270(1Pt 1): L44-53.
Ascuitto RJ, Ross-Ascuitto NT, Chen V, Downing SE: Ventricular function and fatty acid metabolism in neonatal piglet heart. Am J Physiol 1989; 256(Heart Circ Physiol 25): H9-H15.
Liedtke AJ, DeMaison L, Eggleston AM, Cohen LM, Nellis SH: Changes in substrate metabolism and effects of excess fatty acids in reperfused myocardium. Circ Res 1988; 62: 535-542.
Mersmann HJ, Phinney G: In vitro fatty acid oxidation in liver and heart from neonatal swine. Comp Biochem Physiol B Comp Biochem 1973; 44: 219-223.
Werner, JC, Whitman V, Vary TC, Fripp RR, Musselmann J, Schuler HG: Fatty acid utilization in isolated, working newborn pig hearts. Am J Physiol 1983; 244 (Endocrinol Metab 7): E19-E23.
Wolfe RG, Maxwell CV, Nelson EC: Effect of age and dietary fat level on fatty acid oxidation in the neonatal pig. J Nutr 1978; 108: 1621-1634.
Werner JC, Sicard RE: Lactate metabolism in isolated, perfused fetal and newborn pig hearts. Pediatr Res 1987; 22(5): 552-556.