2018, Número 2
<< Anterior Siguiente >>
Investigación en Discapacidad 2018; 7 (2)
Disfunción temprana de nervios craneales correlaciona con alteraciones de la morfología facial en la ataxia espinocerebelosa tipo 2.
Los nervios craneales y la morfología facial en SCA2
Medrano-Montero J, Velázquez-Pérez L, Rodríguez-Labrada R, Canales-Ochoa N, Peña-Acosta A, Almaguer-Mederos LE, Estupiñan-Rodríguez A, Auburger G
Idioma: Ingles.
Referencias bibliográficas: 90
Paginas: 53-66
Archivo PDF: 819.69 Kb.
RESUMEN
Se realizó un estudio transversal con el objetivo de cuantificar las alteraciones electrofisiológicas de los nervios facial y trigémino y determinar su correlación con las anomalías de la mor-fología facial y el número de repeticiones de CAG en la Ataxia Espinocerebelosa Tipo 2 (SCA2). Se evaluaron 90 pacientes SCA2 y 41 portadores preclínicos de mutación junto con 100 sujetos sanos como controles, pareados por sexo, edad y tipo facial a través de estudios de conducción nerviosa motora periférica del nervio facial, reflejo de parpadeo (BR) y reflejo T mentoniano (reflejo mandibular). Para el análisis de las características de la morfología facial se determinó el tipo facial mediante el índice facial morfológico estandarizado y mediciones a partir de tres planos distintos sobre fotografías. Los pacientes mostraron una prolongación significativa de la latencia y la duración y una reducción de la amplitud del potencial motor del facial. El reflejo mandibular reveló prolongación de la latencia y disminución de la amplitud así como prolongación del componente R2 bilateral del BR. Los portadores preclínicos mostraron duración prolongada del potencial del nervio facial, del reflejo mandibular y de la latencia del componente R2 bilateral del BR. Se obtuvieron alteraciones morfológicas faciales sobre los músculos periorales, periorbitarios y maseterinos en ambos grupos, y algunas de ellas correlacionaron con las hallazgos electrofisiológicos y el número de repeticiones de CAG.
Estas características electrofisiológicas y morfológicas amplían el fenotipo prodrómico de SCA2 y ofrecen nuevas pistas sobre el papel de la mutación ATXN2 en la atrofia muscular, el equilibrio energético neuronal y el metabolismo lipídic
REFERENCIAS (EN ESTE ARTÍCULO)
Wadia NH, Swami RK. A new form of heredo-familial spinocerebellar degeneration with slow eye movements (nine families). Brain 1971; 94(2):359-74. ttps://doi.org/10.1093/brain/94.2.359.
Auburger G, Diaz GO, Capote RF, Sanchez SG, Perez MP, del Cueto ME, et al. Autosomal dominant ataxia: genetic evidence for locus he-terogeneity from a Cuban founder-effect popu-lation. Am J Hum Genet 1990; 46(6): 1163-77. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1683834/.
Hernández A1, Magariño C, Gispert S, Santos N, Lunkes A, Orozco G. Genetic mapping of the spinocerebellar ataxia 2 (SCA2) locus on chromosome 12q23-q24.1. Genomics 1995; 25(2):433-5. http://www.sciencedirect.com/science/article/pii/088875439580043L.
Gispert S, A Lunkes, N Santos, G Orozco, D Ha-Hao, T Ratzlaff, et al. Localization of the candidate gene D-amino acid oxidase outside the refined I-cM region of spinocerebellar ata-xia 2. Am J Hum Genet 1995; 57(4): 972-5. https://www.ncbi.nlm.nih.gov/pmc/?term=Gispert-S+et+al+1993+Nat+Genet.
Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 1996; 14(3): 269-76. https://www.ncbi.nlm.nih.gov/pubmed/?term=Pulst-SM+et+al+1996+Nat+Genet.
Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, Sasaki H, et al. Identification of the spinoce-rebellar ataxia type 2 gene using a direct iden-tification of repeat expansion and cloning tech-nique, DIRECT. Nat Genet 1996; 14(3): 277-84. https://www.ncbi.nlm.nih.gov/pubmed/8896556
Velázquez L. Ataxia Espinocerebelosa tipo 2. Diagnóstico, pronóstico y evolución. 3 ed. La Habana: Editorial Ciencias Médicas 2012. http://www.bvscuba.sld.cu/libro/ataxia-espinocerebelosa-tipo-2-diagnostico-pronostico-y-evolucion/.
Velázquez-Pérez L, Fernandez-Ruiz J, Díaz R, Pérez-González R, Canales ON, Sánchez CG, et al. Spinocerebellar ataxia type 2 olfactory impairment shows a pattern similar to other major neurodegenerative diseases. J Neurol 2006; 253: 1165-9. DOI 10.1007/s00415-006-0183-2.
Velázquez PL, Rodríguez LR, Sánchez CG, Laffita MJM, Almaguer ML, Aguilera RR, et al Comprehensive characterization of spinocere-bellar ataxia type 2 in Cuba and its application in intervention projects. Rev Cub.Salud Pública [serial on the Internet]. 2011; 37(3): 230-44. http:// dx. doi. org/10.1590/S0864-346620 11000300006
Velázquez-Pérez L, Seifried C, Santos-Falcón N, Abele M, Ziemann U, Almaguer LE, et al. Saccade velocity is controlled by polyglutamine size in spinocerebellar ataxia 2. Ann Neurol 2004; 56(3): 444-7. http://onlinelibrary.wiley.com/doi/10.1002/ana.20220/pdf.
Velázquez PL, Seifried C, Abele M, Wirjatijasa F, Rodríguez LR, Santos FN, Sánchez CG, Almaguer ML, et al. Saccade velocity is redu-ced in presymptomatic spinocerebellar ataxia type 2. Clin Neurophysiol 2009; 120(3): 632-5. doi: 10.1016/j.clinph.2008.12.040. https://www.ncbi.nlm.nih.gov/pubmed/.
Paneque M, Lemos C, Sousa A, Velázquez L, Fleming M, Sequeiros J. Role of the Disease in the Psychological Impact of Pre-Symptomatic Testing for SCA2 and FAP ATTRV30M: Expe-rience with the Disease, Kinship and Gender of the Transmitting Parent. J Genet Couns 2009; 18(5): 483-93. doi: 10.1007/s10897-009-9240-1.
Rodríguez-Labrada R, Velázquez-Pérez L, Seigfried C, Canales-Ochoa N, Auburger G, Medrano-Montero J, et al. Saccadic latency is prolonged in Spinocerebellar Ataxia type 2 and correlates with the frontal-executive dysfun-ctions. J Neurol Sci 2011; 306 (1-2): 103-7. doi: 10.1016/j.jns.2011.03.033.
Rodríguez-Labrada R, Velázquez-Pérez L, Auburger G, Ziemann U, Canales-Ochoa N, Medrano-Montero J, et al. Spinocerebellar ata-xia type 2: Measures of saccade changes im-prove power for clinical trials. Mov Disord 2016; 31(4):570-8. doi: 10.1002/mds.26532. http://onlinelibrary.wiley.com/doi/10.1002/mds.26532/epdf.
Almaguer-Mederos LE, Aguilera Rodríguez R, González Zaldivar Y, Almaguer Gotay D, Cue-llo Almarales D, Laffita Mesa J, et al. Estima-tion of survival in spinocerebellar ataxia type 2 Cuban patients. Clin Genet 2013; 83(3): 293-4. doi: 10.1111/j.1399-0004.2012.01902.x. http://onlinelibrary.wiley.com/doi/10.1111/j.1399-0004.2012.01902.x/epdf.
Almaguer-Mederos LE, Falcón NS, Almira YR, Zaldivar YG, Almarales DC, Góngora EM, et al. Estimation of the age at onset in spinocerebe-llar ataxia type 2 Cuban patients by survival analysis. Clin Genet 2010; 78(2):169-74. doi: 10.1111/j.1399-0004.2009.01358.x. http://onlinelibrary.wiley.com/doi/10.1111/j.1399-0004.2009.01358.x/epdf.
Velázquez-Pérez L, Rodríguez-Labrada R, García-Rodríguez JC, Almaguer-Mederos LE, Cruz-Mariño T, Laffita-Mesa JM. A Com-prehensive Review of Spinocerebellar Ataxia Type 2 in Cuba. Cerebellum 2011; 10(2):184-98. doi: 10.1007/s12311-011-0265-2. https://link.springer.com/article/10.1007%2Fs12311-011-0265-2.
Rodríguez-Labrada R, Velázquez-Perez L, Canales ON, Galicia PL, Haro VR, Sanchez CG, et al. Subtle Rapid Eye Movement Sleep Abnormalities in Presymptomatic Spinocerebe-llar Ataxia Type 2 Gene Carriers. Mov Disord 2011; 26(2): 347-50. doi: 10.1002/mds.23409.
Auburger GWJ. Spinocerebellar ataxia type 2. In: Subramony SH, Dürr A, editors. Handbook of Clinical Neurology. Ataxic Disorders. Vol. 103 (3rd series), 2012, p. 423-36. doi:10.1016/B978-0-444-51892-7.00026-7
Della NR, Foresti S, Tessa C, Moretti M, Gi-nestroni A, Gavazzi C, et al. ADC mapping of neurodegeneration in the brainstem and cere-bellum of patients with progressive ataxias. Neuroimage 2004; 22(2): 698-705. DOI: 10.1016/j.neuroimage.2004.01.035.
Mohit H, Bhalt Richard F, Donad B. Chronic Cerebellar Degeneration. In: Textbook of Inter-nal Medicine. William N. Kelley. 2da ed. Lip-pincott Company (Ed), Philadelphia, New York 1992, pp 2176-7
Orozco G, Nodarse A, Cordoves R, Auburger G. Autosomal dominant cerebellar ataxia: Cli-nical analysis of 263 patients from a homoge-neous population in Holguin, Cuba. Neurology 1990; 40(9):1369-75.
Estrada R, Galarraga J, Orozco G, Nodarse A, Auburger G. Spinocerebellar ataxia 2 (SCA2): Morphometric analyses in 11 autopsies charac-terize it as an olivo-ponto-cerebellar atrophy (OPCA) plus. Acta Neuropathol 1999; 97(3): 306-10. https://doi.org/10.1007/s004010050989.
Rüb U, Schultz C, Del Tredici K, Gierga K, Reifenberger G, de Vos RA, et al. Anatomically based guidelines for systematic investigation of the central somatosensory system and their application to a spinocerebellar ataxia type 2 (SCA2) patient. Neuropathol Appl Neurobiol 2003; 29(5): 418-33. https://onlinelibrary.wiley.com/doi/epdf/10.1046/j.1365-2990.2003.00504.x.
Rüb U, Bürk K, Schöls L, Brunt ER, de Vos RA, Diaz GO, et al. Damage to the reticu-lotegmental nucleus of the pons in spinocere-bellar ataxia type 1, 2, and 3. Neurology 2004; 63(7): 1258-63
Rüb U, Gierga K, Brunt ER, de Vos RA, Bauer M, Schöls L, et al. Spinocerebellar ataxias types 2 and 3: degeneration of the pre-cerebellar nuclei isolates the three phylogene-tically defined regions of the cerebellum. J Neural Transm 2005; 112(11): 1523-45. DOI 10.1007/s00702-005-0287-3.
Rüb U, Schöls L, Paulson H, Auburger G, Kermer P, Jen JC, et al. Clinical features, neu-rogenetics and neuropathology of the polyglu-tamine spinocerebellar ataxias type 1, 2, 3, 6 and 7. Prog Neurobiol 2013; 104: 38-66. doi: 10.1016/j.pneurobio.2013.01.001.
Gierga K, Buró K, Bauer M, Orozco DG, Au-burger G, Schultz C, et al. Involvement of the cranial nerves and their nuclei in spinocerebe-llar ataxia type 2 SCA2). Acta Neuropathol 2005; 109(6): 617-31. DOI: 10.1007/s00401-005-1014-8
Lastres-Becker I, Brodesser S, Lütjohann D, Azizov M, Buchmann J, Hintermann E, et al. Insulin receptor and lipid metabolism pathology in ataxin-2 knock-out mice. Hum Mol Genet 2008; 17(10):1465-81. doi: 10.1093/hmg/ddn035.
Hoche F, Balikó L, den Dunnen W, Steinecker K, Bartos L, Sáfrány E, et al. Spinocerebellar Ataxia Type 2 (SCA2): Identification of Early Brain Degeneration in One Monozygous Twin in the Initial Disease Stage. Cerebellum 2011; 10(2): 245-53. doi: 10.1007/s12311-010-0239-9.
Seidel G, Meierhofer D, Şen NE, Guenther A, Krobitsch S, Auburger G. Quantitative Global Proteomics of Yeast PBP1 Deletion Mutants and Their Stress Responses Identifies Glucose Metabolism, Mitochondrial, and Stress Granule Changes. J Proteome Res 2017; 16(2): 504-15. doi: 10.1021/acs.jproteome.6b00647.
Zhang B, Li L, Chen L, Huang J. Clinical mani-festations and gene mutation in a case of Ma-chado-Joseph disease. Neural Regen Res 2012; 7(35): 2842-7. http://doi.org/10.3969/j.issn.1673-5374.2012.35.013
Bettencourt C, Lima M. Machado-Joseph Di-sease: from first descriptions to new perspecti-ves. Orphanet J Rare Dis 2011; 6: 35. doi: 10.1186/1750-1172-6-35.
Paulson H. Machado-Joseph Disea-se/Spinocerebellar Ataxia Type 3. Handb Clin Neurol 2012; 103: 437-49. doi: 10.1016/B978-0-444-51892-7.00027-9.
Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al. Interna-tional Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. J Neurol Sci 1997; 145(2): 205-11. http://dx.doi.org/10.1016/S0022-510X(96)00231-6.
Kimura J. Electrodiagnosis in Diseases of Ner-ve and Muscle: principles and practice. 3er ed. Oxford university. Press; 2001. ISBN-10: 0195129776. ISBN-13: 9780195129779.
Ward RE. Facial morphology as determined by anthropometry: keeping it simple. J Craniofac Genet Dev Biol 1989; 9(1): 45-60.
Mayoral J, Mayoral G. Principios fundamenta-les y práctica. Científico Técnica, La Habana: 1986.
Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 1996; 14(3): 285-91. DOI: 10.1038/ng1196-285
Medrano Montero J, Velázquez Pérez LC, Canales Ochoa N, Almaguer Mederos LE. Electrophysiological nerves pattern in patients and asymptomatic carriers with Spinocerebe-llar Ataxia type 2 (SCA2). Society Proceedings / Clinical Neurophysiology 2008; 119; e99–e164. doi:10.1016/j.clinph.2008.04.158
Jacobi H, Hauser TK, Giunti P, Globas C, Bauer P, Schmitz-Hübsch T, et al. Spinocere-bellar ataxia types 1, 2, 3 and 6: the Clinical spectrum of ataxia and morphometric brains-tem and cerebellar findings. Cerebellum 2012; 11(1): 155-66. doi: 10.1007/s12311-011-0292-z.
Klockgether T. Ataxias. In: Goetz CG editors. Textbook of Clinical Neurology. 3rd ed, Phila-delphia: Saunders an imprint of Elsevier Inc (Ed); 2007. ISBN: 9781416036180.
Geiner S, Horn AK, Wadia NH, Sakai H, Bütt-ner-Ennever JA. The neuroanatomical basis of slow saccades in spinocerebellar ataxia type 2 (Wadia-subtype). Prog Brain Res 2008; 171: 575–81. doi: 10.1016/S0079-6123(08)00683-3.
Velázquez-Pérez L, Rodríguez-Labrada R, Canales-Ochoa N, Montero JM, Sánchez-Cruz G, Aguilera-Rodríguez R, et al. Progression of early features of spinocerebellar ataxia type 2 in individuals at risk: a longitudinal study. Lan-cet Neurol 2014; 13 (5): 482-9. http://dx.doi.org/10.1016/S1474-4422(14)70027-4.
Velázquez-Pérez L, Rodríguez-Labrada R, Torres-Vega R, Medrano-Montero J, Vázquez-Mojena Y, Auburger G, et al. Abnormal corti-cospinal tract function and motor cortex excita- bility in non-ataxic SCA2 mutation carriers: A TMS study. Clin Neurophysiol 2016; 127(8): 2713-9. doi: 10.1016/j.clinph.2016.05.003.
Velázquez-Pérez L, Rodríguez-Labrada R, Torres-Vega R, Montero JM, Vázquez-Mojena Y, Auburger G, et al. Central motor conduction time as prodromal biomarker in spinocerebellar ataxia type 2. Mov Disord 2016; 31(4):603-4.doi: 10.1002/mds.26555.
Velázquez-Pérez L, Tünnerhoff J, Rodríguez-Labrada R, Torres-Vega R, Belardinelli P, Me-drano-Montero J, et al. Corticomuscular Cohe-rence: a Novel Tool to Assess the Pyramidal Tract Dysfunction in Spinocerebellar Ataxia Type 2. Cerebellum 2017; 16(2): 602-6. DOI 10.1007/s12311-016-0827-4
Velázquez-Pérez L, Sanchez Cruz G, Canales Ochoa N, et al. Electrophysiological features in patients and presymptomatic relatives with spinocerebellar ataxia type 2. J Neurol Sci 2007; 263:158-64. http://www.pubpdf.com/pub/17706249/Electrophysiological-features-in-patients-and-presymptomatic-relatives-with-spinocerebellar-ataxia-t.
Halbach-MV, Gispert S, Stehning T, Damrath E, Walter M, Auburger G. Atxn2 Knockout and CAG42-Knock-in Cerebellum Shows Similarly Dysregulated Expression in Calcium Homeos-tasis Pathway. Cerebellum 2017; 16(1): 68-81. doi: 10.1007/s12311-016-0762-4.https://www.ncbi.nlm.nih.gov/labs/articles/26868665/.
Schöls L, Reimold M, Seidel K, Globas C, Bro-ckmann K, Hauser TK , et al. No parkinsonism in SCA2 and SCA3 despite severe neurodege-neration of the dopaminergic substantia nigra. Brain 2015; 138(Pt 11):3316-26. doi: 10.1093/brain/awv255.
Schöls L, Gispert S, Vorgerd M, Menezes Viei-ra-Saecker AM, Blanke P, Auburger G , et al. Spinocerebellar ataxia type 2. Genotype and phenotype in German kindreds. Arch Neurol 1997; 54(9):1073-80. doi:10.1001/archneur.1997.00550210011007.
Damrath E, Heck MV, Gispert S, Azizov M, Nowock J, Seifried C, et al. ATXN2-CAG42 Sequesters PABPC1 Into Insolubility and Indu-ces FBXW8 in Cerebellum of Old Ataxic Knock-In Mice. PLoS Genet 2012; 8(8):e1002920. doi: 10.1371/journal.pgen.1002920.
Riess O, Laccone FA, Gispert S, Schöls L, Zühlke C, Vieira-Saecker AM, et al. SCA2 tri-nucleotide expansion in German SCA patients. Neurogenetics 1997; 1(1): 59-64. https://www.ncbi.nlm.nih.gov/pubmed/10735276.
Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, et al. Ataxin-2 interme-diate-length polyglutamine expansions are as-sociated with increased risk for ALS. Nature 2010; 26; 466(7310): 1069-75. doi: 10.1038/nature09320. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965417/.
Lee T, Li YR, Ingre C, Weber M, Grehl T, Gre-dal O, et al. Ataxin-2 intermediate-length polyglutamine expansions in European ALS patients. Hum Mol Genet 2011; 20(9): 1697-700. doi: 10.1093/hmg/ddr045.
Gispert S, Kurz A, Waibel S, Bauer P, Liepelt I, Geisen C, et al. The modulation of Amyotrop-hic Lateral Sclerosis risk by ataxin-2 interme-diate polyglutamine expansions is a specific ef-fect. Neurobiol Dis 2012; 45(1): 356-61. doi: 10.1016/j.nbd.2011.08.021.
Lahut S, Ömür Ö, Uyan Ö, Ağım ZS, Özoğuz A, Parman Y, et al. ATXN2 and its neighbou-ring gene SH2B3 are associated with in-creased ALS risk in the Turkish population. PLoS One 2012; 7(8): e42956. doi: 10.1371/journal.pone.0042956.
Dansithong W, Paul S, Figueroa KP, Rinehart MD, Wiest S, Pflieger LT, et al. Ataxin-2 regu-lates RGS8 translation in a new BAC-SCA2 transgenic mouse model. PLoS Genet 2015; 11(4): e1005182. doi: 10.1371/journal.pgen.1005182.
Jiménez-López D, Guzmán P. Insights into the evolution and domain structure of Ataxin-2 pro-teins across eukaryotes. BMC Res Notes 2014; 7: 453. doi: 10.1186/1756-0500-7-453. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105795/.
Jiménez-López D, Bravo J, Guzmán P. Evolu-tionary history exposes radical diversification among classes of interaction partners of the MLLE domain of plant poly(A)-binding proteins. BMC Evol Biol 2015; 15: 195. doi: 10.1186/s12862-015-0475-1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4574140/.
Ralser M, Albrecht M, Nonhoff U, Lengauer T, Lehrach H, Krobitsch S. An integrative ap-proach to gain insights into the cellular function of human ataxin-2. J Mol Biol 2005; 346(1): 203-14. DOI: 10.1016/j.jmb.2004.11.024
Satterfield TF, Jackson SM, Pallanck LJ. A Drosophila homolog of the polyglutamine di-sease gene SCA2 is a dosage-sensitive regu- lator of actin filament formation. Genetics 2002; 162(4): 1687-702. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1462369/pdf/12524342.pdf.
Meierhofer D, Halbach M, Şen NE, Gispert S, Auburger G. Ataxin-2 (Atxn2)-Knock-Out Mice Show Branched Chain Amino Acids and Fatty Acids Pathway Alterations. Mol Cell Proteo-mics 2016; 15(5): 1728-39. doi: 10.1074/mcp.M115.056770. http://www.mcponline.org/content/15/5/1728.long.
Auburger G, Gispert S, Lahut S, Omür O, Damrath E, Heck M, et al. 12q24 locus asso-ciation with type 1 diabetes: SH2B3 or ATXN2? World J Diabetes 2014; 5(3): 316-27. doi: 10.4239/wjd.v5.i3.316. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4058736/.
Lastres-Becker I, Rüb U, Auburger G. Spinoce-rebellar ataxia 2 (SCA2). Cerebellum 2008; 7(2): 115-24. doi: 10.1007/s12311-008-0019-y.
Kiehl TR, Nechiporuk A, Figueroa KP, Keating MT, Huynh DP, Pulst SM. Generation and cha-racterization of Sca2 (ataxin-2) knockout mice. Biochem Biophys Res Commun 2006; 339(1):17-24. DOI: 10.1016/j.bbrc.2005.10.186
Lastres-Becker I, Nonis D, Eich F, Klinkenberg M, Gorospe M, Kötter P, et al. Mammalian ata-xin-2 modulates translation control at the pre-initiation complex via PI3K/mTOR and is indu-ced by starvation. Biochim Biophys Acta 2016; 1862(9): 1558-69. doi: 10.1016/j.bbadis.2016.05.017.
Drost J, Nonis D, Eich F, Leske O, Damrath E, Brunt ER, et al. Ataxin-2 modulates the levels of Grb2 and SRC but not ras signaling. J Mol Neurosci 2013; 51(1): 68-81. doi: 10.1007/s12031-012-9949-4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3739869/
Nonis D, Schmidt MH, van de Loo S, Eich F, Dikic I, Nowock J, et al. Ataxin-2 associates with the endocytosis complex and affects EGF receptor trafficking. Cell Signal 2008; 20(10):1725-39. doi: 10.1016/j.cellsig.2008.05.018.
Ralser M, Nonhoff U, Albrecht M, Lengauer T, Wanker EE, Lehrach H, et al. Ataxin-2 and huntingtin interact with endophilin-A complexes to function in plastin-associated pathways. Hum Mol Genet 2005; 14(19): 2893-909. DOI: 10.1093/hmg/ddi321
Takahara T, Maeda T. Transient sequestration of TORC1 into stress granules during heat stress. Mol Cell 2012; 47(2): 242-52. doi: 10.1016/j.molcel.2012.05.019.
DeMille D, Badal BD, Evans JB, Mathis AD, Anderson JF, Grose JH. PAS kinase is activa-ted by direct SNF1-dependent phosphorylation and mediates inhibition of TORC1 through the phosphorylation and activation of Pbp1. Mol Biol Cell 2015; 26(3): 569-82. doi: 10.1091/mbc.E14-06-1088. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310746/.
Bar DZ, Charar C, Dorfman J, Yadid T, Taffo-reau L, Lafontaine DL, et al. Cell size and fat content of dietary-restricted Caenorhabditis elegans are regulated by ATX-2, an mTOR re-pressor. Proc Natl Acad Sci U S A 2016; 113(32): E4620-9. doi: 10.1073/pnas.1512156113.
Fittschen M, Lastres-Becker I, Halbach MV, Damrath E, Gispert S, Azizov M, et al. Genetic ablation of ataxin-2 increases several global translation factors in their transcript abundance but decreases translation rate. Neurogenetics 2015; 16(3): 181-92. doi: 10.1007/s10048-015-0441-5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475250/.
van de Loo S, Eich F, Nonis D, Auburger G, Nowock J. Ataxin-2 associates with rough en-doplasmic reticulum. Exp Neurol 2009; 215(1): 110-8. doi: 10.1016/j.expneurol.2008.09.020.
Swisher KD, Parker R. Localization to, and effects of Pbp1, Pbp4, Lsm12, Dhh1, and Pab1 on stress granules in Saccharomyces cerevi-siae. PLoS One 2010; 5(4): e10006. doi: 10.1371/journal.pone.0010006. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848848/.
Nonhoff U, Ralser M, Welzel F, Piccini I, Balze-reit D, Yaspo ML, et al. Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and in-terferes with P-bodies and stress granules. Mol Biol Cell 2007; 18(4): 1385-96. DOI: 10.1091/mbc.E06-12-1120. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1838996/.
Seidel K, Siswanto S, Fredrich M, Bouzrou M, den Dunnen WF, Özerden I, et al. On the Dis-tribution of Intranuclear and Cytoplasmic Aggregates in the Brainstem of Patients with Spinocerebellar Ataxia Type 2 and 3. Brain Pathol 2017; 27(3): 345-55. doi: 10.1111/bpa.12412.
Wang X, Chen XJ. A Cytosolic Network Suppressing Mitochondria-Mediated Proteosta- tic Stress and Cell Death. Nature 2015; 524(7566): 481-4. doi: 10.1038/nature14859. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4582408/.
Vianna MC, Poleto DC, Gomes PF, Valente V, Paçó-Larson ML. Drosophila ataxin-2 gene en-codes two differentially expressed isoforms and its function in larval fat body is crucial for development of peripheral tissues. FEBS Open Bio 2016; 6(11): 1040-53. eCollection 2016. DOI:10.1002/2211-5463.12124. http://onlinelibrary.wiley.com/doi/10.1002/2211-5463.12124/epdf.
Sen NE, Drost J, Gispert S, Torres-Odio S, Damrath E, Klinkenberg M, et al. Search for SCA2 blood RNA biomarkers highlights Ataxin-2 as strong modifier of the mitochondrial factor PINK1 levels. Neurobiol Dis 2016; 96: 115-26. doi: 10.1016/j.nbd.2016.09.002.
Mayer C, Windhager S, Schaefer K, Mitte-roecker P. BMI and WHR Are Reflected in Fe-male Facial Shape and Texture: A Geometric Morphometric Image Analysis. PLoS One 2017; 12(1):e0169336. doi: 10.1371/journal.pone.0169336.
Krey KF, Dannhauer KH. Morphometric analysis of facial profile in adults. J Orofac Orthop 2008; 69(6): 424-36. doi: 10.1007/s00056-008-8803-3.
Halazonetis DJ. Morphometric correlation bet-ween facial soft-tissue profile shape and skele-tal pattern in children and adolescents. Am J Orthod Dentofacial Orthop 2007; 132(4): 450-7. DOI: 10.1016/j.ajodo.2005.10.033
Ilankovan V, Soames JV. Morphometric analysis of orbital, buccal and subcutaneous fats: their potential in the treatment of enop-hthalmos. Br J Oral Maxillofac Surg 1995; 33(1): 40-2.
Wills AM, Hubbard J, Macklin EA, Glass J, Tandan R, Simpson EP, et al. Hypercaloric en-teral nutrition in patients with amyotrophic late-ral sclerosis: a randomised, double-blind, pla-cebo-controlled phase 2 trial. Lancet 2014; 383(9934): 2065-72. doi: 10.1016/S0140-6736(14)60222-1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176708/.
Weinberg SM, Parsons TE, Marazita ML, Maher BS. Heritability of Face Shape in Twins: A Preliminary Study using 3D Stereophoto-grammetry and Geometric Morphometrics. Dent 2013; 3000 1(1). pii: 14.
Liang S, Wu J, Weinberg SM, Shapiro LG. Improved detection of landmarks on 3D human face data. Conf Proc IEEE Eng Med Biol Soc 2013; 6482-5. doi: 10.1109/EMBC.2013.6611039.
Kustár A, Forró L, Kalina I, Fazekas F, Honti S, Makra S, et al. FACE-R--a 3D database of 400 living individuals' full head CT- and face scans and preliminary GMM analysis for craniofacial reconstruction. J Forensic Sci 2013; 58(6): 1420-8. doi: 10.1111/1556-4029.12215. http://onlinelibrary.wiley.com/doi/10.1111/1556-4029.12215/pdf.
Wellens HL, Kuijpers-Jagtman AM, Halazone-tis DJ. Geometric morphometric analysis of craniofacial variation, ontogeny and modularity in a cross-sectional sample of modern humans. J Anat 2013; 222(4): 397-409. doi: 10.1111/joa.12027. httSP://www.ncbi.nlm.nih.gov/pmc/artiLCes/PMC3610033/pdf/joa0222-0397.pdf