2020, Número 1
<< Anterior
Otorrinolaringología 2020; 65 (1)
Hipoacusia no sindrómica de origen genético. Conceptos actuales
Arenas-Sordo ML, Linares-Mendoza EP, Peñuelas-Romero KJ, Castro-Peña S, Agís-Ocaña JG
Idioma: Español
Referencias bibliográficas: 79
Paginas: 43-58
Archivo PDF: 267.21 Kb.
RESUMEN
La hipoacusia neurosensorial es el déficit sensorial más frecuente. Por lo general, no
es sindrómica y tiene causa genética. Suele ser secundaria a herencia mendeliana
(autosómica y ligada al cromosoma X). En general, el tipo y el inicio de la hipoacusia
neurosensorial nos guían al patrón dominante o recesivo. El dominante generalmente
es poslingual y progresivo; mientras que el autosómico recesivo es prelingual, no
progresivo y de severo a profundo. Las diferentes hipoacusias neurosensoriales
autosómicas dominantes forman un grupo llamado DFNA, con diferentes números
según el subtipo (genes) de hipoacusia neurosensorial. En los casos recesivos, DFNB
también con diferentes números y de la misma manera las hipoacusias neurosensoriales
ligadas al cromosoma X como DFNX. Con las herramientas genéticas recientes,
como la secuenciación de nueva generación, para la identificación de genes que
causan hipoacusia neurosensorial, se han encontrado y caracterizado al menos 120
genes, pero estamos lejos del final, todavía hay muchos genes por descubrir; en alrededor
de 50% de los pacientes no logramos el diagnóstico etiológico, no podemos
encontrar el gen o genes que están implicados. Las mutaciones y variantes no son
las mismas en todas las poblaciones, por lo que es necesario estudiar a pacientes
de diferentes orígenes.
REFERENCIAS (EN ESTE ARTÍCULO)
World Health Organization. Deafness and hearing loss. WHO Fact Sheets 2019. WHO/ https://www.who.int/newsroom/ fact-sheets/detail/deafness-and-hearing-loss. World Health Organization, 2019.
Casazza G, Meier JD. Evaluation and management of syndromic congenital hearing loss. Curr Opin Otolaryngol Head Neck Surg 2017;25:378-384. doi: 10.1097/ MOO.0000000000000397.
Meena R, Ayub M. Genetics of human hereditary hearing impairment. J Ayub Med Coll Abbottabad 2017;29(4):671- 6.
Cunningham LL, Tucci DL. Hearing loss in adults. N Engl Med 2017;377:2465-2473. doi: 10.1056/NEJMra1616601.
Baux D, Vaché C, Blanchet C, Willems M, Baudoin C, Moclyn M et al. Combined genetic approaches yield a 48% diagnostic rate in a large cohort of French hearingimpaired patients. Sci Rep 2017;7:16783. doi: 10.1038/ s41598-017-16846-9.
Funamura, JL. Evaluation and management of nonsyndromic congenital hearing loss. Curr Opin Otolaryngol Head Neck Surg 2017;25:385-389. doi: 10.1097/ MOO.0000000000000398.
Rehman AU, Friedman TB, Griffith AJ. Unresolved questions regarding human hereditary deafness. Oral Dis 2017;23:551-558. doi: 10.1111/odi.12516.
Duman D, Tekin M. Autosomal recessive nonsyndromic deafness genes: a review. Front Biosci 2012;17:2213-36.
Kral A. To hear or not to hear: neuroscience of deafness. In: Kral A, Popper AN, Fay RR eds. Deafness. Volumen 47. New York, NY: Springer, 2013;1-15.
Instituto Nacional de Estadística y Geografía. La discapacidad en México, datos al 2014. INEGI c2016. INEGI/ http:// internet.contenidos.inegi.org.mx/contenidos/productos/ prod_serv/contenidos/espanol/bvinegi/productos/nueva_ estruc/702825090203.pdf. México, Instituto Nacional de Estadística y Geografía, 2016.
Papacharalampous GX, Nikolopoulos TP, Davilis DI, Xenellis IE, Korres SG. Universal newborn hearing screening, a revolutionary diagnosis of deafness: real benefits and limitations. Eur Arch Otorhinolaryngol 2011;268(10):1399- 1406. doi: 10.1007/s00405-011-1672-1
Goman AM, Lin FR. Prevalence of hearing loss by severity in the United States. Am J Public Health 2016;106:1820- 1822. doi: 10.2105/AJPH.2016.303299.
Antoniadi T, Pampanos A, Petersen MB. Prenatal diagnosis of prelingual deafness: carrier testing and prenatal diagnosis of the common GJB2 35delG mutation. Prenat Diagn 2001;21(1):10-13. DOI: 10.1002/1097-0223(200101)21:1<10::aid-pd968>3.0.co;2-h
Lasak JM, Allen P, McVay T, Lewis D. Hearing loss diagnosis and management. Prim Care 2014;41(1):19-31. doi: 10.1016/j.pop.2013.10.003.
Benito-Orejas JI, Silva Rico JC. Hipoacusia: identificación e intervención precoces. Pediatr Integral 2013;XVII(5):330- 342.
Schimmenti LA, Palmer CGS. Chapter 38 – Molecular Diagnostic Evaluation of Deaf and Hard-of-Hearing Individuals. In: Kiechle FL, Strom C, Grody WW, Nakamura RM, eds. Molecular Diagnostics: Techniques and Applications for the Clinical Laboratory. 1st ed. London: Academic Press Elsevier, 2010;461-471.
Van Camp G, Smith RJH. Hereditary hearing loss - hereditary hearing loss homepage. En: http://hereditaryhearingloss. org. Consultado: octubre 2019
Van Camp G, Willems P, Smith RJH. Nonsyndromic hearing impairment. unparalleled heterogeneity. Am J Hum Genet 1997;60:759-764.
Vona B, Nanda I, Hofrichter M, Shehata-Dieler W, Haaf T. Non-syndromic hearing loss gene identification: A brief history and glimpse into the future. Mol and Cell Probes 2015;29(5):260-70. doi: 10.1016/j.mcp.2015.03.008.
Kokotas H, Petersen M, Willems P. Mitochondrial deafness. Clin Genet 2007;71:379-391. DOI: 10.1111/j.1399- 0004.2007.00800.x.
Liu XZ, Yuan Y, Yan D, Ding EH, Ouyang XM, Fei Y et al. Digenic inheritance of non-syndromic deafness caused by mutations at the gap junction proteins Cx26 and Cx31. Hum Genet 2009;125(1):53-62. doi: 10.1007/s00439- 008-0602-9.
Shearer AE, Hildebrand MS, Smith RJH. Hereditary hearing loss and deafness overview. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews. University of Washington, Seattle; 1999 Feb 14 [Updated 2017 Jul 27]. En: https://www.ncbi.nlm.nih.gov/books/NBK1434/; Consultado Octubre 2019.
Sheffield AM, Smith RJS. The epidemiology of deafness. Cold Spring Harb Perspect Med 2019;9:a033258. doi: 10.1101/cshperspect.a033258.
Sineni CJ, Yildirim-Baylan M, Guo S, Camarena V, Wang G, Tokgoz-Yilmaz S, et al. A truncating CLDN9 variant is associated with autosomal recessive nonsyndromic hearing loss. Hum Genet 2019;138(10):1071-1075. doi: 10.1007/ s00439-019-02037-1.
Lynch ED, Lee MK, Morrow JE, Welcsh PL, León PE, King MC. Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous. Science 1997;278(5341):1315-8. DOI: 10.1126/science. 278.5341.1315.
Mittal R, Patel AP, Nguyen D, Pan DR, Jhaveri VM, Rudman JR et al. Genetic basis of hearing loss in Spanish, Hispanic and Latino populations. Gene 2018;647:297-305. doi: 10.1016/j.gene.2018.01.027.
De la Luz Arenas-Sordo M, Menéndez I, Hernández- Zamora E, Sirmaci A, Gutiérrez-Tinajero DJ, McGetrick M, et al. Unique spectrum of GJB2 mutations in Mexico. Int J Pediatr Otorhinolaryngol 2012;76:1678-80. OI: 10.1016/j. ijporl.2012.08.005.
Cengiz FB, Yilmazer R, Olgun L, Sennaroglu L, Kirazli T, Olgun Y, et al. Novel pathogenic variants underlie SLC26A4- related hearing loss in a multiethnic cohort. Int J Pediatr Otorhinolaryngol 2017;101:167-171. doi: 10.1016/j. ijporl.2017.08.006.
Bademci G, Foster J 2nd, Mahdieh N, Bonyadi M, Duman D, Cengiz FB et al. Comprehensive analysis via exome sequencing uncovers genetic etiology in autosomal recessive nonsyndromic deafness in a large multiethnic cohort. Genet Med 2015;18:364-371. doi: 10.1038/gim.2015.89.
Hernández-Juárez AA, Lugo-Trampe J de J, Campos- Acevedo LD, Lugo-Trampe A, Treviño-González JL, de la Cruz-Ávila I, et al. GJB2 and GJB6 mutations are an infrequent cause of autosomal-recessive nonsyndromic hearing loss in residents of Mexico. Int J Pediatr Otorhinolaryngol 2014;78:2107-12. doi: 10.1016/j.ijporl.2014.09.016.
Hilgert N, Smith RJH, Van Camp G. Forty-six genes causing nonsyndromic hearing impairment: Which ones should be analyzed in DNA diagnostics? Mutat Res 2009;681(2- 3):189-196. doi: 10.1016/j.mrrev.2008.08.002.
Shearer AE, Eppsteiner RW, Smith RJH. Deafness. In: Leonard DGB, editors, Molecular pathology in clinical practice. 2nd ed. Switzerland: Springer, 2016;197-201.
Gao X, Yuan YY, Lin QF, Xu JC, Wang WQ, Qiao YH, et al. Mutation of IFNLR1, an interferon lambda receptor 1, is associated with autosomal-dominant non-syndromic hearing loss. J Med Genet 2018;55(5):298-306. doi: 10.1136/ jmedgenet-2017-104954.
Xia W, Hu J, Ma J, Huang J, Jing T, Deng L, Zhang J et al. Mutations in TOP2B cause autosomal‐dominant hereditary hearing loss via inhibition of the PI3K‐Akt signalling pathway. FEBS Press 2019;593(15):2008-18. doi: 10.1002/1873-3468.13482.
Li Y, Pohl E, Boulouiz R, Schraders M, Nümberg G, Charif M. Mutations in TPRN cause a progressive form of autosomalrecessive nonsyndromic hearing loss. Am J Hum Genet 2010;86(3):479-84. doi: 10.1016/j.ajhg.2010.02.003.
Oonk AMM, Huygen PLM, Kunst HPM, Kremer H, Pennings RJ. Features of autosomal recessive non-syndromic hearing impairment: a review to serve as a reference. Clin Otolaryngol 2016;41(5):487-97. doi: 10.1111/coa.12567.
Petersen MB, Willems P. Non‐syndromic, autosomal‐recessive deafness. Clin Genet 2006;69(5):371-92. DOI: 10.1111/j.1399-0004.2006.00613.x.
Luxon LM, Cohen M, Coffey RA, Phelsp PD, Britton KE, Jan H et al. Neuro-otological findings in Pendred síndrome. Int J Audiology 2003;42(2):82-8. https://doi. org/10.3109/14992020309078339.
Petersen MB, Wang Q, Willems PJ. Sex-linked deafness. Clin Genet 2007;73(1):14-23. DOI: 10.1111/j.1399- 0004.2007.00913.x.
Corvino V, Apisa P, Malesci R, Laria C, Auletta G, Franzé A. X-linked sensorineural hearing loss: a literature review. Curr Genomics 2018;19(5):327-38. doi: 10.2174/138920 2919666171218163046.
Wales JR, Karltorp E, Ramsden J, Smeds H. X-linked malformation deafness, a comparison of hearing augmentation with either bone-anchored hearing aid or cochlear implantation In: book of abstracts – 15th international conference on cochlear implants and other implantable auditory technologies, Antwerp 27-30 June 2018, Collected work. JHS 2018;8(2):231-232.
Karami-Eshkaftaki R, Ahmadinejad F, Aghaei S, Moghim H, Hashemzadeh-Chalestori M, Jami Mohammed-Saeid. Hearing loss: A review on molecular genetics and epidemiologic aspects. Int J Epidemiol Res 2017;4(2):166-72.
Fukushima K, Ramesh A, Srisailapathy CR, Ni L, Wayne S, O’Neill ME. An autosomal recessive nonsyndromic form of sensorineural hearing loss maps to 3p-DFNB6. Genome Res 1995;5:305-8. DOI: 10.1101/gr.5.3.305.
Kenneson A, Van Naarden BK, Boyle C. GJB2 (connexin 26) variants and nonsyndromic sensorineural hearing loss: a HuGE review. Genet Med 2002;4(4):258-74. DOI: 10.1097/00125817-200207000-00004.
DeMille D, Carlston CM, Tam OH, et al. Three novel GJB2 (connexin 26) variants associated with autosomal dominant syndromic and nonsyndromic hearing loss. Am J Med Genet A 2018;176(4):945-50. doi: 10.1002/ajmg.a.38648.
Loeza-Becerra F, Rivera-Vega MdelR, Martínez-Saucedo M, González-Huerta LM, Urueta-Cuellar H Berruecos- Villalobos P et al. Particular distribution of the GJB2/ GJB6 gene mutations in Mexican population with hearing impairment. Int J Pediatr Otorhinolaryngol 2014;78:1057- 60. doi: 10.1016/j.ijporl.2014.04.002.
Shan J, Chobot-Rodd J, Castellanos R, Babcock M, Shanske A, Parikh SR, et al. GJB2 mutation spectrum in 209 hearing impaired individuals of predominantly Caribbean Hispanic and African descent. Int J Pediatr Otorhinolaryngol 2010; 74: 611-8. doi: 10.1016/j.ijporl.2010.03.004.
Denoyelle F, Weil D, Maw MA, Wilcox SA, Lench NJ, Allen Powell-DR, et al. Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26 gene. Hum Mol Genet 1997;6(12):2173-7. https://doi.org/10.1093/ hmg/6.12.2173.
Huang S, Huang B, Wang G, Kang DY, Zhang X, Meng X et al. The relationship between the GJB3 c.538C>T variant and hearing phenotype in the Chinese population. Int J Pediatr Otorhinolaryngol 2017;102:67-70. doi: 10.1016/j. ijporl.2017.09.001.
Li Y, Zhu B. Genotypes and phenotypes of a family with a deaf child carrying combined heterozygous mutations in SLC26A4 and GJB3 genes. Mol Med Rep 2016;14(1):319- 324. doi: 10.3892/mmr.2016.5280.
Deng Y, Wang H, Mou Y, Zeng Q, Xiong X. Exome sequencing identifies novel compound heterozygous mutations in GJB3 gene that cause erythrokeratodermia variabilis et progressiva. Australas J Dermatol 2019;60(1):87-89. doi: 10.1111/ajd.12887.
Naseri M, Akbarzadehlaleh M, Masoudi M, Ahngari N, Poursadegh Zonousi AA, Poursadegh Zonousi A, et al. Genetic linkage analysis of DFNB4, DFNB28, DFNB93 loci in autosomal recessive non-syndromic hearing loss: Evidence for digenic inheritance in GJB2 and GJB3 mutations. Iran J Public Health 2018;47(1): 95-102.
Chen K, Wu X, Zong L, Jiang H. GJB3/GJB6 screening in GJB2 carriers with idiopathic hearing loss: Is it necessary? J Clin Lab Anal 2018;32(9):e22592. doi: 10.1002/jcla.22592.
Pater JA, Benteau T, Griffin A, Penney C, Stanton SG, Predham S, et al. A common variant in CLDN14 causes precipitous, prelingual sensorineural hearing loss in multiple families due to founder effect. Hum Genet 2017;136(1):107-18. doi: 10.1007/s00439-016-1746-7.
Kitano T, Kitajiri SI, Nishio SY, Usami SI. Detailed clinical features of deafness caused by a claudin-14 variant. Int J Mol Sci 2019;20(18):4579. doi: 10.3390/ijms20184579.
Laleh MA, Naseri M, Zonouzi AAP, Masoudi M. Ahangari N, Shams L, et al. Diverse pattern of gap junction beta-2 and gap junction beta-4 genes mutations and lack of contribution of DFNB21, DFNB24, DFNB29, and DFNB42 loci in autosomal recessive nonsyndromic hearing loss patients in Hormozgan, Iran. J Res Med Sci 2017;22:99. doi: 10.4103/ jrms.JRMS_976_16.
Zahid S, Branham K, Schlegel D, Pennesi ME, Michaelides M, Heckenlively J, et al. MYO7A. In: Zahid S, Branham K, Schlegel D, Pennesi ME, Michaelides M, Heckenlively J, et al, editors. Retinal Dystrophy Gene Atlas. 1st ed. Suiza: Springer Nature, 2018;147-9.
Ma Y, Xiao Y, Zhang F, Han Y, Li J, Xu L, et al. Novel compound heterozygous mutations in MYO7A gene associated with autosomal recessive sensorineural hearing loss in a Chinese family. Int J Pediatr Otorhinolaryngol 2016;83:179-85. doi: 10.1016/j.ijporl.2016.01.001.
Asgharzade S, Reiisi S, Tabatabaiefar MA, Chaleshtori MH. Screening of Myo7A mutations in Iranian patients with autosomal recessive hearing loss from west of Iran. Iran J Public Health 2017;46(1):76-82.
Kooshavar D, Razipour M, Movasat M, Keramatipour M. Targeted next generation sequencing identified a novel mutation in MYO7A causing Usher syndrome type 1 in an Iranian consanguineous pedigree. Int J Pediatr Otorhinolaryngol 2018;104:10-3. doi: 10.1016/j. ijporl.2017.10.022.
Rehman AU, Bird JE, Faridi R, Shahzad M, Shah S, Lee K, et al. Mutational spectrum of MYO15A and the molecular mechanisms of DFNB3 human deafness. Hum Mutat 2016;37(10):991-1003. doi: 10.1002/humu.23042.
Zhang F, Xu L, Xiao Y, Li J, Bai X, Wang H. Three MYO15A Mutations identified in one Chinese family with autosomal recessive nonsyndromic hearing loss. Neural Plast 2018; vol. 2018: 5898025. https://doi.org/10.1155/2018/5898025.
Xia H, Huang X, Guo Y, Hu P, He G, Deng X, et al. Identification of a novel MYO15A mutation in a Chinese family with autosomal recessive nonsyndromic hearing loss. PLoS One 2015;10(8):e0136306. https://doi.org/10.1371/journal. pone.0136306.
Hussain S, Khan JZ, Ismail M, Mansoor Q, Khan MH. Molecular characterization of autosomal recessive non syndromic hearing loss in selected families from District Mardan, Pakistan. Pak J Pharm Sci 2018;31(1):51-56.
Sana Z. p.Y556C is a recurrent mutation in Pendred syndrome causing gene SLC26A4 in Punjabi population. Pakistan J Zool 2018;50(3):1113-8.
Mey K, Muhamad AA, Tranebjaerg L, Rendtorff ND, Rasmussen SH, Bille M, et al Rendtorff, et al. Association of SLC26A4 mutations, morphology, and hearing in pendred syndrome and NSEVA. Laryngoscope 2019;129(11):2574-9. https://doi.org/10.1002/lary.27319.
Singh PK, Ghosh M, Sharma S, Shastri S, Gupta N, Chowdhury MR, et al. Identification of a novel homozygous mutation in transmembrane channel like 1 (TMC1) gene, one of the second- tier hearing loss genes after GJB2 in India. Indian J Med Res 2017;145(4):492-7. doi: 10.4103/ijmr.IJMR_397_15.
Fettiplace R. Is TMC1 the hair cell mechanotransducer channel? Biophys J 2016;111(1):3-9. doi: 10.1016/j. bpj.2016.05.032.
Sadeghian L, Tabatabaiefar MA, Fattahi N, Pourreza MR, Tahmasebi P, Alavi Z, et al. Next-generation sequencing reveals a novel pathological mutation in the TMC1 gene causing autosomal recessive non-syndromic hearing loss in an Iranian kindred. Int J Pediatr Otorhinolaryngol 2019;124;99-105. doi: 10.1016/j.ijporl.2019.05.023.
Iwasa Y, Nishio S, Sugaya A, Kataoka Y, Kanda Y, Taniguchi M, et al. OTOF mutation analysis with massively parallel DNA sequencing in 2,265 Japanese sensorineural hearing loss patients. PLoS ONE 2019;14(5):1-10. doi: 10.1371/ journal.pone.0215932.
Da Silva Costa SM, Ramos PZ, Martins FTA, Sartorato EL. Genetic diagnosis of deafness. In: Dossena S, Paulmichl M, eds. The Role of Pendrin in Health and Disease. 1st ed. Switzerland: Springer, 2017;61-81.
Schrauwen I, Chakchouk I, Acharya A, Liagat K, Irfanullah, University of Washington CMG, et al. Novel digenic inheritance of PCDH15 and USH1G underlies profound non-syndromic hearing impairment. BMC Med Genet 2018;19(1):122. doi: 10.1186/s12881-018-0618-5
Mei L, Chen J, Zong L, Zhu Y, Liang C, Jones RO, et al. A deafness mechanism of digenic Cx26 (GJB2) and Cx30 (GJB6) mutations: Reduction of endocochlear potential by impairment of heterogeneous gap junctional function in the cochlear lateral wall. Neurobiol Dis 2017;108:195-203. doi: 10.1016/j.nbd.2017.08.002.
Jing W, Zongjie H, Denggang F, Na H, Bin Z, Aifen Z, et al. Mitochondrial mutations associated with aminoglycoside ototoxicity and hearing loss susceptibility identified by meta-analysis. J Med Genet 2015;52(2):95-103.
Meza G, Torrez-Ruiz NM, Tirado-Gutiérrez C, Aguilera P. mtDNA mutations, hearing loss and amonglycoside treatment in Mexicans. Braz J Otorhinolaryngol 2011;77(5):573-6. http://dx.doi.org/10.1590/S1808- 86942011000500006.
Soini HK, Karjalainen MK, Hinttala R, Rautio A, Hallman M, Ususimaa J. Mitochondrial hearing loss mutations among Finnish preterm and term-born infants. Audiol Res 2017;7(2):189. DOI: https://dx.doi.org/10.4081%2Fa udiores.2017.189.
Usami S, Nishio S. Nonsyndromic Hearing Loss and Deafness, Mitochondrial. In: Adam MP, Ardinger HH, Pagon RA, et al, editors. GeneReviews. University of Washington, Seattle; 2004 Oct 22 [2018 Jun 14]. En: https://www.ncbi.nlm.nih.gov/ books/NBK1422/?report=classic; consultado octubre 2019
Subathra M, Ramesh A, Selvakumari M, Karthikeyen NP, Srisailapathy CR. Genetic epidemiology of mitochondrial pathogenic variants causing nonsyndromic hearing loss in a large cohort of South Indian hearing impaired individuals. Ann Hum Genet 2016;80(5):257-73. doi: 10.1111/ahg.12161.
Ganesan P, Schmiedge J, Manchaiah V, Swapna S, Dhandayutham S, Kothandaramen PP. Ototoxicity: A challenge in diagnosis and treatment. J Audiol Otol 2018;22(2):59-68. doi: 10.7874/jao.2017.00360.