2019, Número 5
<< Anterior Siguiente >>
Rev Méd Electrón 2019; 41 (5)
Avances neuroquirúrgicos y biología molecular en el tratamiento del glioblastoma multiforme
Sierra BEM, León PMQ, Morales FMA
Idioma: Portugués
Referencias bibliográficas: 26
Paginas: 1230-1241
Archivo PDF: 490.21 Kb.
RESUMEN
A pesar de los avances en radioterapia, quimioterapia y los tratamientos de resección
quirúrgica agresiva en el glioblastoma multiforme, el pronóstico sigue siendo sombrío.
Con la presente revisión se describen, en un marco actual, las principales alternativas
de tratamiento del glioblastoma multiforme. Se revisaron los principales artículos
publicados en inglés, en revistas de alto impacto a nivel mundial, acerca de los
principales avances en el tratamiento de este tumor. Se abordaron los importantes
progresos neuroquirúrgicos en la resección del glioblastoma así como las implicaciones
de las células madres tumorales en la génesis y control de la proliferación tumoral y el
efecto de la hipoxia sobre la dinámica celular tumoral. Se explican las alteraciones del
ADN que ocasionan tumorogénesis y las mutaciones del PTEN en el glioblastoma.
REFERENCIAS (EN ESTE ARTÍCULO)
Llongueras J. Na+/H+ exchanger NHE9 affects tumor progression of human glioblastomas by altering endosomal pH (893.34). The Based J [Internet]. 2014[citado 02/08/2017];28(1). Disponible en: https://www.fasebj.org/doi/abs/10.1096/fasebj.28.1_supplement.893.34
Lara-Velázquez M. Advances in Brain Tumor Surgery for Glioblastoma in Adults. Brain Sci. 2017;7(12) . Citado en PubMed:PMID:29261148.
Gronych J, Pfister E, Jones D. Connect Four with Glioblastoma Stem Cell Factors. Cell.2014;157(3). Citado en PubMed:PMID:24766799.
Pengcheng Li, Chun Zhou, Lunshan Xu, et al. Hypoxia Enhances Stemness of Cancer Stem Cells in Glioblastoma: An In Vitro Study. Int J Med Sci. 2013;10(4):399- 407. Citado en PubMed:PMID: 23471193.
Gómez-Vega JC, Ocampo Navia MI, Feo Lee O. Epidemiología y caracterización general de los tumores cerebrales primarios en el adulto. Univ Med [Internet]. 2019[citado 03/08/2018];60(1). Disponible en: http://dx.doi.org/10.11144/Javeriana.umed60-1.cere
WILEY J & SONS. Cirugía guiada por imágenes para la resección de tumores cerebrales. Cochrane Database of Systematic Reviews[Internet]. 2014;1. Disponible en: https://www.cochrane.org/es/CD012788/cirugia-guiada-por-imagenes-para-lostumores- cerebrales
Valenzuela R. Nuevas terapias en el manejo de los gliomas de alto grado. Rev Med Clin Condes [Internet]. 2017 [citado 03/08/2018];28(3):401-8. Disponible en: https://www.sciencedirect.com/science/article/pii/S0716864017300652
Kut C, Chaichana KL, Xi J, et al. Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography. Sci Transl Med. 2015;7(292). Citado en PubMed:PMID:26084803.
Iftimia N, Hammer DX, Mujat M, et al. Optical coherence tomography imaging for cancer diagnosis and therapy guidance. Conf Proc IEEE Eng Med Biol Soc. 2009;2009: 4067–69. Citado en PubMed:PMID:19964101.
Sardi Correa C, Acosta Cadavid C, Rodríguez Gómez AM, et al. Grosor coroideo central en sujetos hispanos sanos medido por tomografía de coherencia óptica con imagen de profundidad mejorada. Rev Mex Oftalmol [Internet]. 2017 [citado 03/12/2018];91(1):2-8. Disponible en: https://www.sciencedirect.com/science/article/pii/S018745191600024X
Moore GE, Peyton WT, French LA, et al. The clinical use of fluorescein in neurosurgery; the localization of brain tumors. J Neurosurg. 1948;5(4):392–98. Citado en PubMed:PMID:18872412.
Vidal-Sicart S, Valdés Olmos R, Nieweg O E, et al. De la imagen intervencionista a la guía intraoperatoria: nuevas perspectivas combinando herramientas avanzadas y navegación con la cirugía radioguiada. Rev Esp Med Nucl Imagen Mol [Internet]. 2018[citado 03/11/2018];37(1):28-40. Disponible en: https://www.sciencedirect.com/science/article/pii/S2253654X17301063
Díez Valle R, Slof J, Galván J, et al. Estudio observacional retrospectivo sobre la efectividad del ácido5-aminolevulínico en la cirugía de los gliomas malignos en España. Neurología[Internet]. 2014[citado 08/08/2018];29(3):131-38. Disponible en: https://www.elsevier.es/es-revista-neurologia-295-articulo-estudio-observacionalretrospectivo- sobre-efectividad-S0213485313001230
Slof J, Díez Valle R, Galván J. Análisis coste-efectividad de la cirugía del glioma maligno guiada por fluorescencia con ácido 5-aminolevulínico. Neurología [Internet]. 2015[citado 18/08/2018];(3):30:163-168. Disponible en: https://www.elsevier.es/esrevista- neurologia-295-articulo-analisis-coste-efectividad-cirugia-del-glioma- S0213485313002867
Castle M, Nájera E, Samprón N, et al. Biopsia cerebral estereotáctica sin marco: capacidad diagnóstica y complicaciones. Neurocirugía[Internet]. 2014[citado 08/08/2018];25(2):56–61. Disponible en: https://www.researchgate.net/publication/260914418_Biopsia_cerebral_estereotactica _sin_marco_capacidad_diagnostica_y_complicacione
Eseonu CI, Rincon-Torroella J, ReFaey K, et al. Awake craniotomy vs. craniotomy under general anesthesia for perirolandic gliomas: Evaluating perioperative complications and extent of resection. Neurosurgery 2017;81(3):481–89. Citado en PubMed;PMID:28327900.
Lau D, Hervey-Jumper SL, Han SJ, et al. Intraoperative perception and estimates on extent of resection during awake glioma surgery: Overcoming the learning curve. J Neurosurg. 2018;128(5):1–9.1410-1418. Citado en PubMed;PMID:28731401.
Schwarzmaier HJ, Eickmeyer F, Von Tempelhoff W.et al. Mr-guided laser-induced interstitial thermotherapy of recurrent glioblastoma multiforme: Preliminary results in 16 patients. Eur J Radiol. 2006;59(2):208–215. Citado en PubMed;PMID:16854549.
Martirosyan NL, Cavalcanti DD, Eschbacher JM, et al. Use of in vivo near-infrared laser confocal endomicroscopy with indocyanine green to detect the boundary of infiltrative tumor. J Neurosurg. 2011; 115(6):1131–38. Citado en PubMed;PMID:21923240.
Pirro V, Alfaro CM, Jarmusch AK, et al. Intraoperative assessment of tumor margins during glioma resection by desorption electrospray ionization-mass spectrometry. Proc Natl Acad Sci USA 2017;114(26):6700–05. Citado en PubMed;PMID:28607048.
Huang P. CBIO-20. GLIOBLASTOMA SPECIFIC PROTEINS IDENTIFIED THROUGH COMBINED IN VITRO AND IN VIVO PHAGE DISPLAY BIOPANNING. Neuro-Oncol. 2015;17(Supl5):v55–v65. Citado en PubMed;PMID:4638662.
Sonikpreet A. CD38-targeted therapy in glioblastoma: A step forward. Neurology [Internet]. 2018[citado 08/08/2018];90(15). Disponible en: https://ascopubs.org/doi/abs/10.1200/JCO.2018.36.15_suppl.e14030
Yang JM. Characterization of PTEN mutations in brain cancer reveals that pten mono-ubiquitination promotes protein stability and nuclear localization. Oncogene. 2017;36(26):3673–85. Citado en PubMed;PMID:28263967.
Erasimus E, Gobin M, Niclou S, et al. DNA repair mechanisms and their clinical impact in glioblastoma. Mutat Res Rev Mutat Res.2016;769:19–35. Citado en PubMed;PMID:27543314.
Kristoffersen K, Stockhausen M, Poulsen H. Inhibition of Notch signaling alters the phenotype of orthotopic tumors formed from glioblastoma multiforme neurosphere cells but does not hamper intracranial tumor growth regardless of endogene Notch pathway signature. Cancer Biol Ther. 2014 Jul 1;15(7):862–877. Citado en PubMed;PMID:24755988.
Pengcheng Li, Chun Zhou, Lunshan Xu, et al. Hypoxia Enhances Stemness of Cancer Stem Cells in Glioblastoma: An In Vitro Study. Int J Med Sci. 2013;10(4):399- 407. Citado en PubMed;PMID:23471193.