2019, Número 3
Vías de señalización celular implicadas en la carcinogénesis cervical
Idioma: Español
Referencias bibliográficas: 58
Paginas:
Archivo PDF: 382.57 Kb.
RESUMEN
Introducción: El Virus de Papiloma Humano se considera un factor clave en el desarrollo de lesiones cérvico uterinas. No obstante, la infección per se no es suficiente para desarrollar todos los eventos carcinogénicos, de manera que estos podrían estar regulados por vías de señalización celular. Las señales transmitidas hacia el interior de la célula, se producen a través de cascadas de señalización, en las que intervienen numerosas proteínas que ganan y/o pierden su actividad biológica, regulando así el metabolismo, la transcripción y traducción de genes.Objetivo: Proveer información actualizada sobre las vías de señalización TLRs, Wnt/β-catenina y PI3K/Akt implicadas en la carcinogénesis cervical.
Métodos: Se realizó una revisión de la literatura especializada mediante artículos originales y revisiones publicadas en bases de datos pertenecientes a los sitios web PubMed, Google Scholar, EBSCO y NCBI, en idiomas español e inglés.
Resultados: Se constató que la vía TLR juega un rol clave en el combate a virus, bacterias y otras infecciones, además de poseer actividad inmune antitumoral. La vía Wnt/β-catenina participa en varios procesos biológicos como la diferenciación, migración y adhesión celular, mientras que, PI3K/Akt está relacionada con el crecimiento, la motilidad y la supervivencia celular.
Conclusiones: La activación o desregulación de algunos componentes de estas vías están implicadas en la proliferación incontrolada de células tumorales, evento importante en la carcinogénesis cervical.
REFERENCIAS (EN ESTE ARTÍCULO)
Martínez Benítez EJ. Biología molecular del VPH tipo 16 y su asociación al cáncer cérvico uterino. Research Gate. 2018. DOI: 10.13140/RG.2.2.31448.6016. https://www.researchgate.net/publication/323738251_Biologia_molecular_del_VPH_tipo_16_y_su_asociacion_al_cancer_cervico_uterino5. Wright A, Howitt BE, Myers AP, Dahlberg SE, Palescandolo E, Hummelen PV. Oncogenic mutations in cervical cancer: genomic differences between adenocarcinomas and squamous cell carcinomas of the cervix. Cancer [en línea]. 2013;119(21):3776-83. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972000/pdf/nihms564810.pdf
Du B, Jiang QL, Cleveland J, Liu BR, Zhang D. Targeting Toll-like receptors against cancer. J Cancer Metastasis Treat. 2016;2:463-70 DOI: 10.20517/2394-4722.2016.62. https://scholar.google.com.cu/scholar?hl=es&as_sdt=0%2C5&q=Targeting+Toll-like+receptors+against+cancer.+J+Cancer+Metastasis+Treat.+2016%3B2%3A463-70++&btnG=
Sweta S, Damodar G. Role of Toll like Receptor(s) in Tumor Biology. J Tumor Med Prev. [en línea]. 2017;1(1):554-5. Disponible en: https://www.researchgate.net/profile/Dr_Damodar_Gupta/publication/316717389_Role_of_Toll_like_Receptors_in_Tumor_Biology/links/590f438da6fdccad7b1266cb/Role-of-Toll-like-Receptors-in-Tumor-Biology.pdf
Yu L, Wang L, Li M, Zhong J, Wang Z, Chen S. Expression of toll-like receptor 4 is down-regulated during progression of cervical neoplasia. Cancer Immunol Immunother. [en línea]. 2010;59:1021-28. Disponible en: http://web.a.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=0&sid=5b2da104-c6f6-4d15-9715-c6d6ae840b46%40sdc-v-sessmgr0412. Wang Y, Weng Y, Shi Y, Xia X, Wang S, Duan H. Expression and functional analysis of Toll-like receptor 4 in human cervical carcinoma. J Membr Biol [en línea]. 2014;247:591-9. Disponible en: https://link.springer.com/article/10.1007/s00232-014-9675-7
Cheng Y, Chen G, Wang X, Huang Y, Ding J, Huang J, et al. TLR4 may accelerate hypoxia reaction to promote the occurrence and progress of cervical lesions by infected pathogenic microorganisms other than HPV. J Cancer Ther. [on line]. 2013;4:549-53. Disponible en: http://file.scirp.org/pdf/JCT_2013041517104684.pdf
Cannella F, Pierangeli A, Scagnolari C, Cacciotti G, Tranquilli G, Stentella P, et al. TLR9 is expressed in human papillomavirus-positive cervical cells and is over-expressed in persistent infections. Immunobiology. [en línea]. 2015;220:363-8. Disponible en: https://www.sciencedirect.com/science/article/pii/S0171298514002034
Fehri E, Ennaifer E, Ardhaoui M, Ouerhani K, Laassili T, Bel Haj Rhouma R, et al. Expression of Toll-like Receptor 9 Increases with Progression of Cervical Neoplasia in Tunisian Women - A Comparative Analysis of Condyloma, Cervical Intraepithelial Neoplasia and Invasive Carcinoma. Asian Pacific Journal of Cancer Prevention, Asian Pacific Education Press Ltd; 2014;15(15):6145-50. Disponible en: https://scholar.google.com.cu/scholar?hl=es&as_sdt=0%2C5&q=Expression+of+Toll-like+Receptor+9+Increases+with+Progression+of+Cervical+Neoplasia+in+Tunisian+Women+-+A+Comparative+Analysis+of+Condyloma&btnG=
Mantilla C, Suárez Mellado I, Duque Jaramillo A, Navas MC. Mecanismos de señalización por β-catenina y su papel en la carcinogénesis. Ces Medicina [en línea]. 2015;29(1). Disponible en: http://scholar.google.com.cu/scholar_url?url=http%3A%2F%2Frevistas.ces.edu.co%2Findex.php%2Fmedicina%2Farticle%2Fdownload%2F109%2F2394&hl=es&sa=T&oi=gga&ct=gga&cd=0&d=7313555211479020471&ei=aXRHXMGtLtKTmwHz25vQBA&scisig=AAGBfm2x__81KHRH7Xdm06kWR08jsAUsAA&nossl=1&ws=1024x634&at=
Persad S, Troussard AA, McPhee TR, Mulholland DJ, Dedhar S. Tumor suppressor PTEN inhibits nuclear accumulation of beta-catenin and T cell/lymphoid enhancer factor 1-mediated transcriptional activation. J Cell Biol. [en línea]. 2001;153(6):1161-74. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192018/pdf/0101058.pdf
Uren A, Fallen S, Yuan H, Usubutun A, Kucukali T, Schlegel R, et al. Activation of the Canonical Wnt Pathway during Genital Keratinocyte Transformation: A Model for Cervical Cancer Progression. Cancer Res. [en línea]. 2005;65:6199-206. Disponible en: http://cancerres.aacrjournals.org/content/canres/65/14/6199.full.pdf
Shinohara A, Yokoyama Y, Wan X, Takahashi Y, Mori Y, Takami T, et al. Cytoplasmic/nuclear expression without mutation of exon 3 of the beta-catenin gene is frequent in the development of the neoplasm of the uterine cervix. Gynecol Oncol [en línea]. 2001:450. Disponible en: https://scholar.google.com.cu/scholar?hl=es&as_sdt=0%2C5&q=Cytoplasmic%2Fnuclear+expression+without+mutation+of+exon+3+of+the+beta-catenin+gene+is+frequent+in+the+development+of+the+neoplasm+of+the+uterine+cervix&btnG=
Pérez Plasencia C, Vázquez Ortíz G, López Romero R, Pina Sánchez P, Moreno J, Salcedo M. Genome wide expression analysis in HPV16 Cervical Cancer: identification of altered metabolic pathways. Infectious Agents and Cancer. [en línea]. 2007;2:16. Disponible en: https://infectagentscancer.biomedcentral.com/articles/10.1186/1750-9378-2-16
Yayun Jiang, Wei Ren, Weijia Wang, Jing Xia, Liyao Gou, Mengyao Liu, et al. Inhibitor of β-catenin and TCF (ICAT) promotes cervical cancer growth and metastasis by disrupting E-cadherin/β-catenin complex. Oncology Reports [en línea]. 2017;38:2597-606. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5780012/pdf/or-38-05-2597.pdf
Qiqi Wang, Qiong Qin, Ran Song, Chunjuan Zhao, Hua Liu, Ying Yang. NHERF1 inhibits beta-catenin-mediated proliferation of cervical cancer cells through suppression of alpha-actinin-4 expression. Cell Death and Disease. 2018;9:668. DOI: 10.1038/s41419-018-0711-x. Disponible en: https://www.nature.com/articles/s41419-018-0711-x
Lu Li, Wen Ting Yang, Peng Sheng Zheng, Xiao Fang Liu. SOX17 restrains proliferation and tumor formation by down-regulating activity of the Wnt/ß-catenin signaling pathway via trans-suppressing ß-catenin in cervical cancer. Cell Death and Disease. 2018;9:741. doi:10.1038/s41419-018-0782-8. https://www.nature.com/articles/s41419-018-0782-8
Ayala Calvillo E, Mojica Vázquez LH, García Carrancá A, González Maya L. Wnt/β catenin pathway activation and silencing of the APC gene in HPV positive human cervical cancer derived cells. Molecular Medicine Reports [en línea]. 2018;17:200-8. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5780127/pdf/mmr-17-01-0200.pdf
Kandel ES, Hay N. The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res [en línea]. 1999;253:210-29. Disponible en: https://www.researchgate.net/profile/Eugene_Kandel2/publication/12721195_The_regulation_and_activities_of_the_multifunctional_serinethreonine_kinase_AktPKB/links/5a7f100b4585154d57d72f45/The-regulation-and-activities-of-the-multifunctional-serine-threonine-kinase-Akt-PKB.pdf
Tan HK, Moad AI, Tan ML. The mTOR Signalling Pathway in Cancer and the Potential mTOR Inhibitory Activities of Natural Phytochemicals. Asian Pacific Journal Cancer Prevention. [en línea]. 2014;15(16):6463-75. Disponible en: http://medicinabiomolecular.com.br/biblioteca/pdfs/Cancer/acido-galico-curcumina-resveratrol-diosgenina-roma-egcg.pdf
Black JD, López S, Cocco E, Bellone S, Altwerger G, Schwab CL, et al. PIK3CA oncogenic mutations represent a major mechanism of resistance to trastuzumab in HER2/neu overexpressing uterine serous carcinomas. British J Cancer. [en línea]. 2015;113:1020-6. Disponible en: https://www.nature.com/articles/bjc2015306
McIntyre JB, Wu JS, Craighead PS, Phan T, Köbel M, Lees-Miller SP, et al. PIK3CA mutational status and overall survival in patients with cervical cancer treated with radical chemoradiotherapy. Gynecologic Oncology. [en línea]. 2013;128:409-14. Disponible en: https://www.sciencedirect.com/science/article/pii/S0090825812009675
Hanker AB, Pfefferle AD, Balko JM, Kuba MG, Young CD, Sánchez V, et al. Mutant PIK3CA accelerates HER2-driven transgenic mammary tumors and induces resistance to combinations of anti-HER2 therapies. Proc Natl Acad Sci USA [en línea]. 2013;110:14372-7. Disponible en: https://www.pnas.org/content/pnas/110/35/14372.full.pdf
Mollon L, Aguilar A, Anderson E, Dean J, Davis L, Warholak T, et al. A systematic literature review of the prevalence of PIK3CA mutations and mutation hotspots in HR+/HER2-metastatic breast cancer. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res. [en línea]. 2018;78 (13 Suppl): Abstract nr 1207. Disponible en: http://cancerres.aacrjournals.org/content/78/13_Supplement/1207.short
Thorpe LM, Spangle JM, Ohlson CE, Cheng H, Roberts TM, Cantley LC, et al. PI3K-p110α mediates the oncogenic activity induced by loss of the novel tumor suppressor PI3K-p85α. Proceedings of the National Academy of Sciences. 2017;114(27):7095-100. Disponible en: https://www.pnas.org/content/114/27/7095.full
Wenqian Zhang, Zhengai Xiong, Tianqin Wei, Qiumeng Li, Ying Tan, Li Ling. Nuclear factor 90 promotes angiogenesis by regulating HIF-1±/VEGF-A expression through the PI3K/Akt signaling pathway in human cervical cancer. Cell Death & Disease [en línea]. 2018;9(276). Disponible en: https://www.nature.com/articles/s41419-018-0334-2