2019, Número 6
<< Anterior
Salud Mental 2019; 42 (6)
FOXP2 and language alterations in psychiatric pathology
Castro MXH, Moltó RMD, Morales MME, Flores LJC, González FJ, Gutiérrez NNA, Alvarez ADE, Nicolini SJH
Idioma: Ingles.
Referencias bibliográficas: 112
Paginas: 297-308
Archivo PDF: 665.53 Kb.
RESUMEN
Antecedentes. Desde los primeros reportes del lingüista Noam Chomsky ha quedado claro que el desarrollo
del lenguaje tiene un importante componente genético. Diversos reportes en familias han mostrado la relación
entre los trastornos del lenguaje y ciertos marcadores genéticos. El gen
FOXP2 ha sido una pieza fundamental
para entender el desarrollo del lenguaje. Se trata de un gen que codifica para un factor de transcripción con
un dominio forkhead de unión al DNA y que participa en la regulación de la expresión de un gran número de
genes durante el desarrollo embrionario de estructuras neuronales fundamentales para el desarrollo del habla
y el lenguaje.
Objetivo. Presentar un panorama actualizado de la relación del gen
FOXP2 en las alteraciones
del lenguaje en la patología psiquiátrica. Método. Revisión narrativa de la información reportada en diversas
bases de datos sobre los recientes avances que soportan la participación genética en las alteraciones del lenguaje
presentes en enfermedades psiquiátricas.
Resultados. Actualización del contenido relacionado con el
gen
FOXP2 y su participación en las alteraciones del lenguaje en las enfermedades psiquiátricas.
Discusión
y conclusión. Los avances en el estudio genético de las alteraciones del lenguaje en la patología psiquiátrica
abren nuevos caminos de investigación que permiten explorar cómo surgió y cómo ha evolucionado el
lenguaje, así como para llevar a cabo estudios comparativos sobre la estructura y el funcionamiento de genes
para aproximarse al entendimiento de esta compleja característica que nos hace humanos.
REFERENCIAS (EN ESTE ARTÍCULO)
Andres, M., Finocchiaro, C., Buiatti, M., & Piazza, M. (2015). Contribution of motor representations to action verb processing. Cognition, 134, 174-184. doi: 10.1016/j.cognition.2014.10.004
Anney, R. J. L. (2013). Chapter 2.3 Common genetic variants in autism spectrum disorders. In The Neuroscience of Autism Spectrum Disorders (pp. 155-167). doi: 10.1016/b978-0-12-391924-3.00010-7
Ardila, A., Bernal, B., & Rosselli, M. (2016). How localized are language brain areas? A review of brodmann areas involvement in oral language. Archives of Clinical Neuropsychology, 31(1), 112-122. doi: 10.1093/arclin/acv081
Atkinson, E. G., Audesse, A. J., Palacios, J. A., Bobo, D. M., Webb, A. E., Ramachandran, S., & Henn, B. M. (2018). No evidence for recent selection at FOXP2 among diverse human populations. Cell, 174(6), 1424-1435. doi: 10.1016/j.cell.2018.06.048
Badcock, N. A., Bishop, D. V., Hardiman, M. J., Barry, J. G., & Watkins, K. E. (2012). Co-localisation of abnormal brain structure and function in specific language impairment. Brain and Language, 120(3), 310-320. doi: 10.1016/j. bandl.2011.10.006
Barber, A. D., Sarpal, D. K., John, M., Fales, C. L., Mostofsky, S. H., Malhotra, A. K., ... Lencz, T. (2019). Age-normative pathways of striatal connectivity related to clinical symptoms in the general population. Biological Psychiatry, 85(11), 966-976. doi: 10.1016/j.biopsych.2019.01.024
Barragán, P. E., & Lozano, S. S. (2011). Identificación temprana de trastornos del lenguaje. Revista Médica Clínica Las Condes, 22(2), 227-232. doi: 10.1016/ s0716-8640(11)70417-5
Becker, M., Devanna, P., Fisher, S. E., & Vernes, S. C. (2018). Mapping of human FOXP2 enhancers reveals complex regulation. Frontiers in Molecular Neuroscience, 11, 47. doi: 10.3389/fnmol.2018.00047
Beilock, S. L., Lyons, I. M., Mattarella-Micke, A., Nusbaum, H. C., & Small, S. L. (2008). Sports experience changes the neural processing of action language. Proceedings of the National Academy of Sciences, 105(36), 13269-13273. doi: 10.1073/pnas.0803424105
Bishop, D. V. (2003). Genetic and environmental risks for specific language impairment in children. International Journal of Pediatric Otorhinolaryngology, 67(Suppl 1), S143-S157. doi: 10.1016/j.ijporl.2003.08.014
Bowers, J. M., & Konopka, G. (2012). The role of the FOXP family of transcription factors in ASD. Disease Markers, 33(5), 251-260. doi: 10.3233/DMA-2012- 0919
Bruce, B., Thernlund, G., & Nettelbladt, U. (2006). ADHD and language impairment. European Child & Adolescent Psychiatry, 15(1), 52-60. doi: 10.1007/s00787- 006-0508-9
Bruce, H. A., & Margolis, R. L. (2002). FOXP2: Novel exons, splice variants, and CAG repeat length stability. Human Genetics, 111(2), 136-144. doi: 10.1007/ s00439-002-0768-5
Brugada, R., Campuzano, O., Sarquella-Brugada, G., Brugada, P., Brugada, J., & Hong, K. (2005). Brugada Syndrome. In Adam M. P., Ardinger H. H., Pagon R. A., et al., (Eds.). GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2019. Retrieved from https://www.ncbi.nlm.nih.gov/ pubmed/20301690
Cohen, N. J., Davine, M., Horodezky, N., Lipsett, L., & Isaacson, L. (1993). Unsuspected language impairment in psychiatrically disturbed children: Prevalence and language and behavioral characteristics. Journal of the American Academy of Child & Adolescent Psychiatry, 32(3), 595-603. doi: 10.1097/00004583-199305000-00016
Cope, N., Harold, D., Hill, G., Moskvina, V., Stevenson, J., Holmans, P., ... Williams, J. (2005). Strong evidence that KIAA0319 on chromosome 6p is a susceptibility gene for developmental dyslexia. The American Journal of Human Genetics, 76(4), 581-591. doi: 10.1086/429131
Chan, K. M., & Fugard, A. J. (2018). Assessing speech, language and communication difficulties in children referred for ADHD: A qualitative evaluation of a UK child and adolescent mental health service. Clinical Child Psychology and Psychiatry, 23(3), 442-456. doi: 10.1177/1359104517753510
Eising, E., Carrion-Castillo, A., Vino, A., Strand, E. A., Jakielski, K. J., Scerri, T. S., ... Fisher, S. E. (2019). A set of regulatory genes co-expressed in embryonic human brain is implicated in disrupted speech development. Molecular Psychiatry, 24(7), 1065-1078. doi: 10.1038/s41380-018-0020-x
Enard, W., Przeworski, M., Fisher, S. E., Lai, C. S., Wiebe, V., Kitano, T., ... Pääbo, S. (2002). Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418(6900), 869-872. doi: 10.1038/nature01025
Estruch, S. B., Graham, S. A., Chinnappa, S. M., Deriziotis, P., & Fisher, S. E. (2016). Functional characterization of rare FOXP2 variants in neurodevelopmental disorder. Journal of Neurodevelopmental Disorders, 8(1), 44. doi: 10.1186/ s11689-016-9177-2
Fenollar-Cortés, J., Gallego-Martínez, A., & Fuentes, L. J. (2017). The role of inattention and hyperactivity/impulsivity in the fine motor coordination in children with ADHD. Research in Developmental Disabilities, 69, 77-84. doi: 10.1016/j.ridd.2017.08.003
Ferland, R. J., Cherry, T. J., Preware, P. O., Morrisey, E. E., & Walsh, C. A. (2003). Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain. Journal of Comparative Neurology, 460(2), 266-279. doi: 10.1002/cne.10654
Feuk, L., Kalervo, A., Lipsanen-Nyman, M., Skaug, J., Nakabayashi, K., Finucane, B., ... Hannula-Jouppi, K. (2006). Absence of a paternally inherited FOXP2 gene in developmental verbal dyspraxia. The American Journal of Human Genetics, 79(5), 965-972. doi: 10.1086/508902
Fisher, S. E., & Marcus, G. F. (2006). The eloquent ape: Genes, brains and the evolution of language. Nature Reviews Genetics, 7(1), 9-20. doi: 10.1038/nrg1747
Fisher, S. E., & Scharff, C. (2009). FOXP2 as a molecular window into speech and language. Trends in Genetics, 25(4), 166-177. doi: 10.1016/j.tig.2009.03.002
FOXP2 protein [Homo sapiens] - Protein - NCBI. (n.d.). Retrieved from https://www. ncbi.nlm.nih.gov/protein/AAI43868.1
Friederici, A. D., & Chomsky, N. (2017). The Functional Language Network. In Language in Our Brain. MIT Press Sholarship Online. doi: 10.7551/ mitpress/9780262036924.003.0005
Gao, R., Zaccard, C. R., Shapiro, L. P., Dionisio, L. E., Martin-de-Saavedra, M. D., Piguel, N. H., ... Penzes, P. (2019). The CNTNAP2-CASK complex modulates GluA1 subcellular distribution in interneurons. Neuroscience Letters, 701, 92- 99. doi: 10.1016/j.neulet.2019.02.025
GeneCards®: The Human Gene Database. (1997). Retrieved from https://www. genecards.org/
Giddan, J. J., Milling, L., & Campbell, N. B. (1996). Unrecognized language and speech deficits in preadolescent psychiatric inpatients. American Journal of Orthopsychiatry, 66(1), 85-92. doi: 10.1037/h0080158
Graham, S. A., & Fisher, S. E. (2015). Understanding language from a genomic perspective. Annual Review of Genetics, 49(1), 131-160. doi: 10.1146/annurevgenet- 120213-092236
Gregory S. G., Connelly J. J., Towers A. J., Johnson J., Biscocho D., Markunas C. A., ... Langford, C. F. (2009). Genomic and epigenetic evidence for oxytocin receptor deficiency in autism. BMC Medicine, 7(1), 62. doi: 10.1186/1741-7015-7-62
Hannenhalli, S., & Kaestner, K. H. (2009). The evolution of Fox genes and their role in development and disease. Nature Reviews Genetics, 10(4), 233-240. doi: 10.1038/nrg2523
Hannula-Jouppi, K., Kaminen-Ahola, N., Taipale, M., Eklund, R., Nopola-Hemmi, J., Kääriäinen, H., & Kere, J. (2005). The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia. PLoS Genetics, 1(4), 50. doi: 10.1371/journal.pgen.0010050
Holland, S. K., Plante, E., Byars, A. W., Strawsburg, R. H., Schmithorst, V. J., & Ball Jr, W. S. (2001). Normal fMRI brain activation patterns in children performing a verb generation task. NeuroImage, 14(4), 837-843. doi: 10.1006/ nimg.2001.0875
Hoogman, M., Guadalupe, T., Zwiers, M. P., Klarenbeek, P., Francks, C., & Fisher, S. E. (2014). Assessing the effects of common variation in the FOXP2 gene on human brain structure. Frontiers in Human Neuroscience, 8, 473. doi: 10.3389/ fnhum.2014.00473
Instituto Nacional de Estadística, Geografía e Informática, INEGI. (2000). XII Censo General de Población y Vivienda 2000. Retrieved from https://www.inegi.org. mx/programas/ccpv/2000/
Instituto Nacional de Estadística, Geografía e Informática, INEGI. (2004). Características de las personas con discapacidad del lenguaje. Retrieved from http://www.beta.inegi.org.mx/app/biblioteca/ficha.html?upc=702825010044
Iverson, J. M., & Braddock, B. A. (2011). Gesture and motor skill in relation to language in children with language impairment. Journal of Speech, Language, and Hearing Research, 54(1), 72-86. doi: 10.1044/1092-4388(2010/08-0197)
Ivorra, J. L., Rivero, O., Costas, J., Iniesta, R., Arrojo, M., Ramos-Ríos, R., ... Sanjuán, J. (2014). Replication of previous genome-wide association studies of psychiatric diseases in a large schizophrenia case–control sample from Spain. Schizophrenia Research, 159(1), 107-113. doi: 10.1016/j.schres.2014.07.004
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845-858. doi: 10.1038/nprot.2015.053
Kemmerer, D., & Gonzalez-Castillo, J. (2010). The two-level theory of verb meaning: An approach to integrating the semantics of action with the mirror neuron system. Brain and Language, 112(1), 54-76. doi: 10.1016/j. bandl.2008.09.010
Khanzada, N., Butler, M., & Manzardo, A. (2017). GeneAnalytics pathway analysis and genetic overlap among autism spectrum disorder, bipolar disorder and schizophrenia. International Journal of Molecular Sciences, 18(3), 527. doi: 10.3390/ijms18030527
Kim, Y. S., & State, M. W. (2014). Recent challenges to the psychiatric diagnostic nosology: A focus on the genetics and genomics of neurodevelopmental disorders. International Journal of Epidemiology, 43(2), 465-475. doi: 10.1093/ ije/dyu037
Konopka, G., Bomar, J. M., Winden, K., Coppola, G., Jonsson, Z. O., Gao, F., ... Geschwind, D. H. (2009). Human-specific transcriptional regulation of CNS development genes by FOXP2. Nature, 462(7270), 213-217. doi: 10.1038/ nature08549
Krishnan, S., Watkins, K. E., & Bishop, D. V. (2016). Neurobiological basis of language learning difficulties. Trends in Cognitive Sciences, 20(9), 701-714. doi: 10.1016/j.tics.2016.06.012
Lai, C. S., Fisher, S. E., Hurst, J. A., Levy, E. R., Hodgson, S., Fox, M., ... Monaco, A. P. (2000). The SPCH1 region on human 7q31: genomic characterization of the critical interval and localization of translocations associated with speech and language disorder. The American Journal of Human Genetics, 67(2), 357-368. doi: 10.1086/303011
Lai, C. S., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413(6855), 519-523. doi: 10.1038/35097076
Lai, C. S., Gerrelli, D., Monaco, A. P., Fisher, S. E., & Copp, A. J. (2003). FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. Brain, 126(11), 2455-2462. doi: 10.1093/ brain/awg247
Li, S., Morley, M., Lu, M., Zhou, S., Stewart, K., French, C. A., ... Morrisey, E. E. (2016). Foxp transcription factors suppress a non-pulmonary gene expression program to permit proper lung development. Developmental Biology, 416(2), 338-346. doi: 10.1016/j.ydbio.2016.06.020
Li, S., Weidenfeld, J., & Morrisey, E. E. (2004). Transcriptional and DNA binding activity of the Foxp1/2/4 family is modulated by heterotypic and homotypic protein interactions. Molecular and Cellular Biology, 24(2), 809-822. doi: 10.1128/mcb.24.2.809-822.2004
Lieberman, P. (2015). Chapter 36 Evolution of Language. In Muehlenbein, M. P. (Ed). Basics in Human Evolution, (pp. 493-503). doi: 10.1016/b978-0-12- 802652-6.00036-0
Liska, A., Bertero, A., Gomolka, R., Sabbioni, M., Galbusera, A., Barsotti, N., ... Gozzi, A. (2017). Homozygous loss of autism-risk gene CNTNAP2 results in reduced local and long-range prefrontal functional connectivity. Cerebral Cortex, 28(4), 1141-1153. doi: 10.1093/cercor/bhx022
Mattos, P., Rabelo, B., Gueiros, F., Soares, T., & Coutinho, G. (2009). Specific language impairment in an adult with type I bipolar disorder: A case report. Revista Brasileira de Psiquiatria, 31(2), 191-192. doi: 10.1590/s1516- 44462009000200023
Mccarthy, N. S., Clark, M. L., Jablensky, A., & Badcock, J. C. (2019). No association between common genetic variation in FOXP2 and language impairment in schizophrenia. Psychiatry Research, 271, 590-597. doi: 10.1016/j. psychres.2018.12.016
McKusick, V. A. (1997, 27 octubre). OMIM Entry - # 602081 - SPEECH-LANGUAGE DISORDER 1; SPCH1. Retrieved from https://omim.org/entry/602081
Meerschaut, I., Rochefort, D., Revençu, N., Pètre, J., Corsello, C., Rouleau, G. A., ... Callewaert, B. (2017). FOXP1-related intellectual disability syndrome: A recognisable entity. Journal of Medical Genetics, 54(9), 613-623. doi: 10.1136/ jmedgenet-2017-104579
Mendoza, E., & Scharff, C. (2017). Protein-Protein interaction among the FoxP family members and their regulation of two target genes, VLDLR and CNTNAP2 in the Zebra Finch Song System. Frontiers in Molecular Neuroscience, 10, 112. doi: 10.3389/fnmol.2017.00112
Meng, H., Smith, S. D., Hager, K., Held, M., Liu, J., Olson, R. K., ... Gruen, J. R. (2005). DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proceedings of the National Academy of Sciences, 102(47), 17053-17058. doi: 10.1073/pnas.0508591102
Mizutani, A., Matsuzaki, A., Momoi, M. Y., Fujita, E., Tanabe, Y., & Momoi, T. (2007). Intracellular distribution of a speech/language disorder associated FOXP2 mutant. Biochemical and Biophysical Research Communications, 353(4), 869-874. doi: 10.1016/j.bbrc.2006.12.130
Moreno-Flagge, N. (2013). Trastornos del lenguaje. Diagnóstico y tratamiento. Revista de Neurología, 57(Supl 1), 85-94. doi: 10.33588/rn.57s01.2013248
Morgan, A., Fisher, S. E., Scheffer, I., & Hildebrand, M. (2017). FOXP2-related speech and language disorders. In GeneReviews®[internet]. Seattle WA: University of Washington, Seattle. Retrieved from https://www.ncbi.nlm.nih. gov/pubmed/27336128
Morris, G., Stoychev, S., Naicker, P., Dirr, H. W., & Fanucchi, S. (2018). The forkhead domain hinge-loop plays a pivotal role in DNA binding and transcriptional activity of FOXP2. Biological Chemistry, 399(8), 881-893. doi: 10.1515/hsz-2018-0185
National Center for Biotechnology Information. (s.f.). Online Mendelian Inheritance in Man (OMIM). Recuperado de https://www.ncbi.nlm.nih.gov/omim/
National Center for Biotechnology Information, U.S. National Library of Medicine. (s.f.). Gene. Retrieved from https://www.ncbi.nlm.nih.gov/gene
National Institutes of Health, The European Molecular Biology Laboratory, & State Secretariat for Education, Research and Innovation SERI. (2002). Universal Protein Resource (UniProt). Retrieved from https://www.uniprot.org/
Newbury, D. F., Paracchini, S., Scerri, T. S., Winchester, L., Addis, L., Richardson, A. J., ... Monaco, A. P. (2011). Investigation of dyslexia and SLI risk variants in reading-and language-impaired subjects. Behavior Genetics, 41(1), 90-104. doi: 10.1007/s10519-010-9424-3
Newbury, D. F., Winchester, L., Addis, L., Paracchini, S., Buckingham, L., Clark, A., ... Monaco, A. P. (2009). CMIP and ATP2C2 modulate phonological short-term memory in language impairment. The American Journal of Human Genetics, 85(2), 264-272. doi: 10.1016/j.ajhg.2009.07.004
Nudel, R., & Newbury, D. F. (2013). Foxp2. Wiley Interdisciplinary Reviews: Cognitive Science, 4(5), 547-560. doi: 10.1002/wcs.1247
Ocklenburg, S., Arning, L., Gerding, W. M., Epplen, J. T., Güntürkün, O., & Beste, C. (2013). FOXP2 variation modulates functional hemispheric asymmetries for speech perception. Brain and Language, 126(3), 279-284. doi: 10.1016/j. bandl.2013.07.001
OMIM. (s.f.). Online Mendelian Inheritance in Man (OMIM). Retrieved from https:// www.ncbi.nlm.nih.gov/omim/
Oswald, F., Klöble, P., Ruland, A., Rosenkranz, D., Hinz, B., Butter, F., ... Herlyn, H. (2017). The FOXP2-Driven Network in Developmental Disorders and Neurodegeneration. Frontiers in Cellular Neuroscience, 11, 212. doi: 10.3389/ fncel.2017.00212
Peñagarikano, O., & Geschwind, D. H. (2012). What does CNTNAP2 reveal about autism spectrum disorder?. Trends in Molecular Medicine, 18(3), 156-163. doi: 10.1016/j.molmed.2012.01.003
Peñagarikano, O., Lázaro, M. T., Lu, X., Gordon, A., Dong, H., Lam, H. A., ... Geschwind, D. H. (2015). Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism. Science Translational Medicine, 7(271), 271ra8. doi: 10.1126/scitranslmed.3010257
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605-1612. doi: 10.1002/jcc.20084
Puglia, M. H., Lillard T. S., Morris J. P., & Connelly J. J. (2015). Epigenetic modification of the oxytocin receptor gene influences the perception of anger and fear in the human brain. Proceedings of the National Academy of Sciences, 112(11), 3308-3313. doi: 10.1073/pnas.1422096112
Plump, A. S., Erskine, L., Sabatier, C., Brose, K., Epstein, C. J., Goodman, C. S., ... Tessier-Lavigne, M. (2002). Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron, 33(2), 219-232. doi: 10.1016/s0896-6273(01)00586-4
Radanovic, M., Nunes, P. V., Gattaz, W. F., & Forlenza, O. V. (2008). Language impairment in euthymic, elderly patients with bipolar disorder but no dementia. International Psychogeriatrics, 20(4), 687-696. doi: 10.1017/ s1041610208007084
Raza, M. H., Domingues, C. E., Webster, R., Sainz, E., Paris, E., Rahn, R., ... Drayna, D. (2016). Mucolipidosis types II and III and non-syndromic stuttering are associated with different variants in the same genes. European Journal of Human Genetics, 24(4), 529-534. doi: 10.1038/ejhg.2015.154
Roll, P., Rudolf, G., Pereira, S., Royer, B., Scheffer, I. E., Massacrier, A., ... Szepetowski, P. (2006). SRPX2 mutations in disorders of language cortex and cognition. Human Molecular Genetics, 15(7), 1195-1207. doi: 10.1093/hmg/ddl035
Roll, P., Vernes, S. C., Bruneau, N., Cillario, J., Ponsole-Lenfant, M., Massacrier, A., ... Szepetowski, P. (2010). Molecular networks implicated in speech-related disorders: FOXP2 regulates the SRPX2/uPAR complex. Human Molecular Genetics, 19(24), 4848-4860. doi: 10.1093/hmg/ddq415
Royer-Zemmour, B., Ponsole-Lenfant, M., Gara, H., Roll, P., Lévêque, C., Massacrier, A., ... Szepetowski, P. (2008). Epileptic and developmental disorders of the speech cortex: Ligand/receptor interaction of wild-type and mutant SRPX2 with the plasminogen activator receptor uPAR. Human Molecular Genetics, 17(23), 3617-3630. doi: 10.1093/hmg/ddn256
Sanjuán, J., Tolosa, A., González, J. C., Aguilar, E. J., Pérez-Tur, J., Nájera, C., ... de Frutos, R. (2006). Association between FOXP2 polymorphisms and schizophrenia with auditory hallucinations. Psychiatric Genetics, 16(2), 67-72. doi: 10.1097/01.ypg.0000185029.35558.bb
Schomers, M. R., & Pulvermüller, F. (2016). Is the sensorimotor cortex relevant for speech perception and understanding? An integrative review. Frontiers in Human Neuroscience, 10, 435. doi: 10.3389/fnhum.2016.00435
Sciberras, E., Mueller, K. L., Efron, D., Bisset, M., Anderson, V., Schilpzand, E. J., ... Nicholson, J. M. (2014). Language problems in children with ADHD: A community-based study. Pediatrics, 133(5), 793-800. doi: 10.1542/peds.2013-3355
Shu, W., Cho, J. Y., Jiang, Y., Zhang, M., Weisz, D., Elder, G. A., ... Buxbaum, J. D. (2005). Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene. Proceedings of the National Academy of Sciences, 102(27), 9643-9648. doi: 10.1073/pnas.0503739102
Shu, W., Yang, H., Zhang, L., Lu, M. M., & Morrisey, E. E. (2001). Characterization of a new subfamily of winged-helix/forkhead (Fox) genes that are expressed in the lung and act as transcriptional repressors. Journal of Biological Chemistry, 276(29), 27488-27497. doi: 10.1074/jbc.m100636200
Song, X., Tang, Y., & Wang, Y. (2016). Genesis of the vertebrate FoxP subfamily member genes occurred during two ancestral whole genome duplication events. Gene, 588(2), 156-162. doi: 10.1016/j.gene.2016.05.019
Španiel, F., Horáček, J., Tintěra, J., Ibrahim, I., Novák, T., Čermák, J., ... Höschl, C. (2011,). Genetic variation in FOXP2 alters grey matter concentrations in schizophrenia patients. Neuroscience Letters, 493(3), 131-135. doi: 10.1016/j. neulet.2011.02.024
Spiteri, E., Konopka, G., Coppola, G., Bomar, J., Oldham, M., Ou, J., ... Geschwind, D. H. (2007). Identification of the transcriptional targets of FOXP2, a gene linked to speech and language, in developing human brain. The American Journal of Human Genetics, 81(6), 1144-1157. doi: 10.1086/522237
Stroud, J. C., Wu, Y., Bates, D. L., Han, A., Nowick, K., Paabo, S., ... Chen, L. (2006). Structure of the forkhead domain of FOXP2 bound to DNA. Structure, 14(1), 159-166. doi: 10.1016/j.str.2005.10.005
Sutcubasi Kaya, B., Metin, B., Tas, Z. C., Buyukaslan, A., Soysal, A., Hatiloglu, D., & Tarhan, N. (2018). Gray matter increase in motor cortex in pediatric ADHD: A voxel-based morphometry study. Journal of Attention Disorders, 22(7), 611- 618. doi: 10.1177/1087054716659139
Teramitsu, I., Kudo, L. C., London, S. E., Geschwind, D. H., & White, S. A. (2004). Parallel FoxP1 and FoxP2 expression in songbird and human brain predicts functional interaction. Journal of Neuroscience, 24(13), 3152-3163. doi: 10.1523/JNEUROSCI.5589-03.2004
Theofanopoulou, C. (2016). Implications of oxytocin in human linguistic cognition: from genome to phenome. Frontiers in Neuroscience, 10, 271. doi: 10.3389/ fnins.2016.00271
Thomas, A. C., Frost, J. M., Ishida, M., Vargha-Khadem, F., Moore, G. E., & Stanier, P. (2012). The speech gene FOXP2 is not imprinted. Journal of Medical Genetics, 49(11), 669-670. doi: 10.1136/jmedgenet-2012-101242
Thordardottir, E. T., & Weismer, S. E. (2002). Verb argument structure weakness in specific language impairment in relation to age and utterance length. Clinical Linguistics & Phonetics, 16(4), 233-250. doi: 10.1080/02699200110116462
Toma, C., Pierce, K. D., Shaw, A. D., Heath, A., Mitchell, P. B., Schofield, P. R., & Fullerton, J. M. (2018). Comprehensive cross-disorder analyses of CNTNAP2 suggest it is unlikely to be a primary risk gene for psychiatric disorders. PLOS Genetics, 14(12), e1007535. doi: 10.1371/journal.pgen.1007535
Trautman, R. C., Giddan, J. J., & Jurs, S. G. (1990). Language risk factor in emotionally disturbed children within a school and day treatment program. Journal of Childhool Communication Disorders, 13(2), 123-133. doi: 10.1177/152574019001300201
Trevisan, P., Sedeño, L., Birba, A., Ibáñez, A., & García, A. M. (2017). A moving story: Whole-body motor training selectively improves the appraisal of action meanings in naturalistic narratives. Scientific Reports, 7(1), 12538. doi: 10.1038/s41598-017-12928-w
U.S. Department of Health & Human Services. (s.f.). Genetics Home Reference. Retrieved from https://ghr.nlm.nih.gov/
Vargha-Khadem, F., Watkins, K., Alcock, K., Fletcher, P., & Passingham, R. (1995). Praxic and nonverbal cognitive deficits in a large family with a genetically transmitted speech and language disorder. Proceedings of the National Academy of Sciences, 92(3), 930-933. doi: 10.1073/pnas.92.3.930
Vernes, S. C., Newbury, D. F., Abrahams, B. S., Winchester, L., Nicod, J., Groszer, M., ... Fisher, S. E. (2008). A functional genetic link between distinct developmental language disorders. New England Journal of Medicine, 359(22), 2337-2345. doi: 10.1056/NEJMoa0802828
Vernes, S. C., Nicod, J., Elahi, F. M., Coventry, J. A., Kenny, N., Coupe, A., ... Fisher, S. E. (2006). Functional genetic analysis of mutations implicated in a human speech and language disorder. Human Molecular Genetics, 15(21), 3154-3167. doi: 10.1093/hmg/ddl392
Vernes, S. C., Spiteri, E., Nicod, J., Groszer, M., Taylor, J. M., Davies, K. E., ... Fisher, S. E. (2007). High-throughput analysis of promoter occupancy reveals direct neural targets of FOXP2, a gene mutated in speech and language disorders. The American Journal of Human Genetics, 81(6), 1232-1250. doi: 10.1086/522238
Wang, H. G., Jeffries, J. J., & Wang, T. F. (2016). Genetic and developmental perspective of language abnormality in autism and schizophrenia: one disease occurring at different ages in humans?. The Neuroscientist, 22(2), 119-131. doi: 10.1177/1073858415572078
Wang, R., Chen, C. C., Hara, E., Rivas, M. V., Roulhac, P. L., Howard, J. T., ... Jarvis, E. D. (2015). Convergent differential regulation of SLIT-ROBO axon guidance genes in the brains of vocal learners. Journal of Comparative Neurology, 523(6), 892-906. doi: 10.1002/cne.23719
Watkins, K. E., Vargha-Khadem, F., Ashburner, J., Passingham, R. E., Connelly, A., Friston, K. J., ... Gadian, D. G. (2002). MRI analysis of an inherited speech and language disorder: Structural brain abnormalities. Brain, 125(3), 465-478. doi: 10.1093/brain/awf057
Weigel, D., Jürgens, G., Küttner, F., Seifert, E., & Jäckle, H. (1989). The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell, 57(4), 645-658. doi: 10.1016/0092- 8674(89)90133-5
Whitehouse, A. J., Bishop, D. V., Ang, Q. W., Pennell, C. E., & Fisher, S. E. (2011). CNTNAP2 variants affect early language development in the general population. Genes, Brain and Behavior, 10(4), 451-456. doi: 10.1111/j.1601- 183X.2011.00684.x
Xu, S., Liu, P., Chen, Y., Chen, Y., Zhang, W., Zhao, H., ... Guo, X. (2018). Foxp2 regulates anatomical features that may be relevant for vocal behaviors and bipedal locomotion. Proceedings of the National Academy of Sciences, 115(35), 8799-8804. doi: 10.1073/pnas.1721820115
Yang, J. (2014). Influences of motor contexts on the semantic processing of actionrelated language. Cognitive, Affective, & Behavioral Neuroscience, 14(3), 912- 922. doi: 10.3758/s13415-014-0258-y
Zhou, W., Zhang, J., Li, Z., Lin, X., Li, J., Wang, S., ... Wei, L. (2019). Targeted resequencing of 358 candidate genes for autism spectrum disorder in a Chinese cohort reveals diagnostic potential and genotype–phenotype correlations. Human Mutation, 40(6), 801-815. doi: 10.1002/humu.23724