2019, Número 1
<< Anterior
TIP Rev Esp Cienc Quim Biol 2019; 22 (1)
Estructura y función de las oxigenasas tipo Rieske/mononuclear
Carrillo-Campos J
Idioma: Español
Referencias bibliográficas: 73
Paginas: 1-12
Archivo PDF: 1398.33 Kb.
RESUMEN
Las oxigenasas Rieske/mononuclear son un grupo de metaloenzimas que catalizan la oxidación de una variedad de
compuestos, destaca su participación en la degradación de compuestos xenobióticos contaminantes; estas enzimas
también participan en la biosíntesis de algunos compuestos de interés comercial. Poseen una amplia especificidad por
el sustrato, convirtiéndolas en un grupo de enzimas con un alto potencial de aplicación en procesos biotecnológicos
que hasta el momento no ha sido explotado. La presente revisión aborda aspectos generales acerca de la función y
estructura de este importante grupo de enzimas.
REFERENCIAS (EN ESTE ARTÍCULO)
Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T. & Ben-Tal, N. (2016). ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research, 44(W1), W344–W350. https://doi.org/10.1093/nar/ gkw408.
Axcell, B. C. & Geary, P. J. (1973). The metabolism of benzene by bacteria. Purification and some properties of the enzyme cis-1,2-dihydroxycyclohexa-3,5-diene (nicotinamide adenine dinucleotide) oxidoreductase (cis-benzene glycol dehydrogenase). Biochemical Journal, 136(4), 927–934. Axcell, B. C. & Geary, P. J. (1975). Purification and some properties of a soluble benzene-oxidizing system from a strain of Pseudomonas. Biochemical Journal, 146(1), 173–183. https://doi.org/DOI 10.1111/j.1432- 1033.1997.00833.x.
Bashton, M. & Chothia, C. (2007). The generation of new protein functions by the combination of domains. Structure, 15(1), 85–99. https://doi.org/10.1016/j.str.2006.11.009.
Batie, C. J., Lahaie, E. & Ballous, P. (1987). Purification and characterization of phthalate oxygenase and phtalate oxygenase reductase from Pseudomonas cepacia. Journal of Biological Chemistry, 262(4), 1510–1518.
Bialy, H. (1997). Biotechnology, bioremediation, and blue genes. Nature Biotechnology, 15(2), 110. https://doi.org/10.1038/ nbt0297-110.
Bruijnincx, P. C. A., Van Koten, G. & Gebbink, R. J. M. K. (2008). Mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad: Recent developments in enzymology and modeling studies. Chemical Society Reviews, 37(12), 2716–2744.
Chakraborty, J. & Dutta, T. K. (2011). From lipid transport to oxygenation of aromatic compounds: evolution within the Bet v1-like superfamily. Journal of Biomolecular Structure and Dynamics, 29(1), 67–78. https://doi.org/10.1080/073 91102.2011.10507375.
Chakraborty, J., Ghosal, D., Dutta, A. & Dutta, T. K. (2012). An insight into the origin and functional evolution of bacterial aromatic ring-hydroxylating oxygenases. Journal of Biomolecular Structure and Dynamics, 30(4), 419–436. https://doi.org/10.1080/07391102.2012.682208.
Chakraborty, J., Suzuki-Minakuchi, C., Okada, K. & Nojiri, H. (2017). Thermophilic bacteria are potential sources of novel Rieske non-heme iron oxygenases. AMB Express, 7(1). https://doi.org/10.1186/s13568-016-0318-5.
Colbert, C. L., Couture, M. M. J., Eltis, L. D. & Bolin, J. T. (2000). A cluster exposed: structure of the Rieske ferredoxin from biphenyl dioxygenase and the redox properties of Rieske Fe-S proteins. Structure, 8(12), 1267–1278. https:// doi.org/10.1016/S0969-2126(00)00536-0.
Daughtry, K. D., Xiao, Y., Stoner-Ma, D., Cho, E., Orville, A. M., Liu, P. & Allen, K. N. (2012). Quaternary ammonium oxidative demethylation: X-ray crystallographic, resonance raman, and uv-visible spectroscopic analysis of a Riesketype demethylase. Journal of the American Chemical Society, 134(5), 2823–2834. https://doi.org/10.1021/ ja2111898.
Davidson, E., Ohnishi, T., Atta-Asafo-Adjei, E. & Daldal, F. (2005). Potential ligands to the [2Fe-2S] Rieske cluster of the cytochrome bc1 complex of Rhodobacter capsulatus probed by site-directed mutagenesis. Biochemistry, 31(13), 3342–3351. https://doi.org/10.1021/bi00128a006.
Dong, X., Fushinobu, S., Fukuda, E., Terada, T., Nakamura, S., Shimizu, K., Nojiri, H., Omori, T., Shoun, H. & Wakagi, T. (2005). Crystal structure of the terminal oxygenase component of cumene dioxygenase from Pseudomonas fluorescens IP01. Journal of Bacteriology, 187(7), 2483– 2490. https://doi.org/10.1128/JB.187.7.2483-2490.2005.
Ensley, B. D. & Gibson, D. T. (1983). Naphthalene dioxygenase: purification and properties of a terminal oxygenase component. Journal of Bacteriology, 155(2), 505–511.
Ensley, B. D., Gibson, D. T. & Laborde, A. L. (1982). Oxidation of naphthalene by a multicomponent enzyme system from Pseudomonas sp. strain NCIB 9816. Journal of Bacteriology, 149(3), 948–954.
Ensley, B. D., Ratzkin, B. J., Osslund, T. D., Simon, M. J., Wackett, L. P. & Gibson, D. T. (1983). Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science, 222(4620), 167–169. https://doi.org/10.1126/science.6353574.
Ertekin, E., Konstantinidis, K. T.,& Tezel, U. (2017). A Rieske-type oxygenase of Pseudomonas sp. BIOMIG1 converts benzalkonium chlorides to benzyldimethyl amine. Environmental Science and Technology, 51(1), 175–181. https://doi.org/10.1021/acs.est.6b03705.
Gibson, D. T., Cruden, D. L., Haddock, J. D., Zylstra, G. J. & Brand, J. M. (1993). Oxidation of polychlorinated biphenyls by Pseudomonas sp. strain LB400 and Pseudomonas pseudoalcaligenes KF707. Journal of Bacteriology, 175(14), 4561–4564. https://doi.org/10.1128/ jb.175.14.4561-4564.1993.
Haddock, J. D. & Gibson, D. T. (1995). Purification and characterization of the oxygenase component of biphenyl 2,3-dioxygenase from Pseudomonas sp. strain LB400 [published erratum appears in J. Bacteriol. 1996 Apr;178(7):258]. Journal of Bacteriology, 177(20), 5834–5839.
Hayaishi, O., Katagiri, M. & Rothberg, S. (1955). Mechanism of the pyrocatechase reaction. Journal of the American Chemical Society, 77(20), 5450–5451. https://doi. org/10.1021/ja01625a095.
Hegg, E. L. & Jr, L. Q. (1997). The 2-His-1-carboxylate facial triad - an emerging structural motif in mononuclear nonheme iron (II) enzymes. European Journal of Biochemistry, 250(3), 625–629. https://doi.org/10.1111/j.1432-1033.1997. t01-1-00625.x.
Hurtubise, Y., Barriault, D. & Sylvestre, M. (1998). Involvement of the terminal oxygenase β subunit in the biphenyl dioxygenase reactivity pattern toward chlorobiphenyls. Journal of Bacteriology, 180(22), 5828–5835.
Jadeja, N. B., More, R. P., Purohit, H. J. & Kapley, A. (2014). Metagenomic analysis of oxygenases from activated sludge. Bioresource Technology, 165, 250–256. https:// doi.org/10.1016/j.biortech.2014.02.045.
Jaganaman, S., Pinto, A., Tarasev, M. & Ballou, D. P. (2007). High levels of expression of the iron-sulfur proteins phthalate dioxygenase and phthalate dioxygenase reductase in Escherichia coli. Protein Expression and Purification, 52(2), 273–279. https://doi.org/10.1016/j.pep.2006.09.004.
Jiang, H., Parales, R. E. & Gibson, D. T. (1999). The α subunit of toluene dioxygenase from Pseudomonas putida F1 can accept electrons from reduced ferredoxin (TOL) but is catalytically inactive in the absence of the β subunit. Applied and Environmental Microbiology, 65(1), 315–318.
Jiang, H., Parales, R. E., Lynch, N. A. & Gibson, D. T. (1996). Site-directed mutagenesis of conserved amino acids in the alpha subunit of toluene dioxygenase: potential mononuclear non-heme iron coordination sites. Journal of Bacteriology, 178(11), 3133–3139. https://doi.org/10.1128/ jb.178.11.3133-3139.1996. 26. Kauppi, B., Lee, K., Carredano, E., Parales, R. E., Gibson, D. T., Eklund, H. & Ramaswamy, S. (1998). Structure of an aromatic-ring-hydroxylating dioxygenase naphthalene 1,2-dioxygenase. Structure, 6(5), 571–586. https://doi. org/10.1016/S0969-2126(98)00059-8.
Khara, P., Roy, M., Chakraborty, J., Dutta, A. & Dutta, T. K. (2018). Characterization of a topologically unique oxygenase from Sphingobium sp. PNB capable of catalyzing a broad spectrum of aromatics. Enzyme and Microbial Technology, 111, 74–80. https://doi.org/10.1016/j. enzmictec.2017.10.006.
Koehntop, K. D., Emerson, J. P. & Que, L. (2005). The 2-His- 1-carboxylate facial triad: a versatile platform for dioxygen activation by mononuclear non-heme iron (II) enzymes. Journal of Biological Inorganic Chemistry, 10(2), 87–93. https://doi.org/10.1007/s00775-005-0624-x.
Kojima, Y., Fujisawa, H., Nakazawa, A., Nakazawa, T., Kanetsuna, F., Taniuchi, H., Nozaki, M. & Hayaishi, O. (1967). Studies on Pyrocatechase. The Journal of Biological Chemistry, 242(14), 3270–3278.
Kweon, O., Kim, S. J., Baek, S., Chae, J. C., Adjei, M. D., Baek, D. H., Kim, Y. C. & Cerniglia, C. E. (2008). A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases. BMC Biochemistry, 9(1), 1–20. https://doi.org/10.1186/1471- 2091-9-11.
Larentis, A. L., Sampaio, H. D. C. C., Martins, O. B., Rodrigues, M. I. & Alves, T. L. M. (2011). Influence of induction conditions on the expression of carbazole dioxygenase components (CarAa, CarAc, and CarAd) from Pseudomonas stutzeri in recombinant Escherichia coli using experimental design. Journal of Industrial Microbiology and Biotechnology, 38(8), 1045–1054. https://doi.org/10.1007/s10295-010-0879-2.
Leahy, J. G., Batchelor, P. J. & Morcomb, S. M. (2003). Evolution of the soluble diiron monooxygenases. FEMS Microbiology Reviews, 27(4), 449–479. https://doi.org/10.1016/S0168- 6445(03)00023-8.
Li, H., Zhang, Q., Wang, X. L., Ma, X. Y., Lin, K. F., Liu, Y. D., Gu, J. D., Lu, S. G., Shi, L., Lu, Q. & Shen, T. T. (2012). Biodegradation of benzene homologues in contaminated sediment of the east China sea. Bioresource Technology, 124, 129–136. https://doi.org/10.1016/j.biortech.2012.08.033.
Li, J., Zhang, D., Song, M., Jiang, L., Wang, Y., Luo, C. & Zhang, G. (2017). Novel bacteria capable of degrading phenanthrene in activated sludge revealed by stableisotope probing coupled with high-throughput sequencing. Biodegradation, 28(5–6), 423–436. https://doi.org/10.1007/ s10532-017-9806-9.
Linder, T. (2014). CMO1 encodes a putative choline monooxygenase and is required for the utilization of choline as the sole nitrogen source in the yeast Scheffersomyces stipitis (syn. Pichia stipitis). Microbiology (United Kingdom), 160(PART 5), 929–940. https://doi.org/10.1099/ mic.0.073932-0.
Long, M., Betrán, E., Thornton, K. & Wang, W. (2003). The origin of new genes: glimpses from the young and old. Nature Reviews Genetics, 4(11), 865–875. https://doi. org/10.1038/nrg1204.
Mallick, S., Chakraborty, J. & Dutta, T. K. (2011). Role of oxygenases in guiding diverse metabolic pathways in the bacterial degradation of low-molecular-weight polycyclic aromatic hydrocarbons: a review. Critical Reviews in Microbiology, 37(1), 64–90. https://doi.org/10.3109/104 0841X.2010.512268.
Martin, F., Malagnoux, L., Violet, F., Jakoncic, J. & Jouanneau, Y. (2012). Diversity and catalytic potential of PAH-specific ring-hydroxylating dioxygenases from a hydrocarbon-contaminated soil. Applied Microbiology and Biotechnology, 97(11), 5125–5135. https://doi.org/10.1007/ s00253-012-4335-2.
Mason, H. S., Fowlks, W. L. & Peterson, E. (1955). Oxygen transfer and electron transport by the phenolase complex. Journal of the American Chemical Society, 77(10), 2914– 2915. https://doi.org/10.1021/ja01615a088.
Mason, J. R., Butler, C. S., Cammack, R. & Shergill, J. K. (1997). Structural studies on the catalytic component of benzene dioxygenase from Pseudomonas putida. Biochemical Society Transactions, 25(1), 90–95. https:// doi.org/10.1042/bst0250090.
Mitchell, A. J. & Weng, J.-K. (2019). Unleashing the synthetic power of plant oxygenases: from mechanism to application. Plant Physiology, 179(March), pp.01223.2018. https://doi. org/10.1104/pp.18.01223.
Ni Chadhain, S. M., Norman, S. R., Pesce, K. V., Kukor, J. J. & Zylstra, G. J. (2006). Microbial dioxygenase gene population shifts during polycyclic aromatic hydrocarbon biodegradation. Applied and Environmental Microbiology, 72(6), 4078–4087. https://doi.org/10.1128/aem.02969-05.
Nojiri, H., Nam, J. W., Kosaka, M., Morii, K. I., Takemura, T., Furihata, K., Yamane, H. & Omori, T. (1999). Diverse oxygenations catalyzed by carbazole 1,9a-dioxygenase from Pseudomonas sp. strain CA10. Journal of Bacteriology, 181(10), 3105–3113.
Nordlund, P. & Eklund, H. (1995). Di-iron-carboxylate proteins. Current Opinion in Structural Biology, 5(6), 758–766. https://doi.org/10.1016/0959-440X(95)80008-5.
Özgen, F. F. & Schmidt, S. (2019). Rieske Non-Heme Iron Dioxygenases: Applications and Future Perspectives. In Q. Husain & M. F. Ullah (Eds.), Biocatalysis: Enzymatic Basics and Applications (pp. 57–82). https://doi.org/10.1007/978- 3-030-25023-2_4.
Parales, R. E., Parales, J. V. & Gibson, D. T. (1999). Aspartate 205 in the catalytic domain of naphthalene dioxygenase is essential for activity. Journal of Bacteriology, 181(6), 1831–1837.
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. & Ferrin, T. E. (2004). UCSF Chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084.
Prabhakaran, K., Kirchheimer, W. F. & Harris, E. B. (1968). Oxidation of phenolic compounds by Mycobacterium leprae and inhibition of phenolase by substrate analogues and copper chelators. Journal of Bacteriology, 95(6), 2051–2053.
Pruzinska, A., Tanner, G., Anders, I., Roca, M. & Hortensteiner, S. (2003). Chlorophyll breakdown: pheophorbide a oxygenase is a Rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene. Proceedings of the National Academy of Sciences, 100(25), 15259–15264. https://doi.org/10.1073/ pnas.2036571100.
Que, L. (2000). One motif - many different reactions. Nature Structural Biology, 7(3), 182–184. https://doi. org/10.1038/73270.
Rathinasabapathi, B., Burnet, M., Russell, B. L., Gage, D. A., Liao, P.-C., Nye, G. J., Scott, P., Golbeck, J. H. & Hanson, A. D. (1997). Choline monooxygenase, an unusual ironsulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning. Proceedings of the National Academy of Sciences, 94(7), 3454–3458. https://doi.org/10.1073/ pnas.94.7.3454.
Resnick, S., Lee, K. & Gibson, D. (1996). Diverse reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp strain NCIB 9816. Journal of Industrial Microbiology & Biotechnology, 17(5–6), 438–457. https://doi.org/10.1007/ bf01574775.
Rieske, J. S., MacLennan, D. H. & Coleman, R. (1964). Isolation and properties of an iron-protein from the (reduced coenzyme Q)-cytochrome C reductase complex of the respiratory chain. Biochemical and Biophysical Research Communications, 15(4), 338–344. https://doi. org/10.1016/0006-291X(64)90171-8.
Riveros-Rosas, H. & Julián-Sánchez, A. (2006). Functional plasticity of medium-chain dehydrogenases / reductases. In H. Weiner, B. Plapp, R. Londahl, & E. Maser (Eds.), Enzymology and Molecular Biology of Carbonyl Metabolism 12 (pp. 419–433). West Lafayette, Indiana: Purdue University.
Rosche, B., Tshisuaka, B., Fetzner, S. & Lingens, F. (1995). 2-Oxo-1,2-dihydroquinoline 8-Monooxygenase, a twocomponent enzyme system from Pseudomonas putida 86. The Journal of Biological Chemistry, 270(30), 17836–17842. https://doi.org/10.1074/jbc.270.30.17836.
Sato, S., Nam, J., Kasuga, K., Nojiri, H., Yamane, H., & Omori, T. (1997). Identification and characterization of genes encoding carbazole 1,9a-dioxygenase in Pseudomonas sp. strain CA10. Journal of Bacteriology, 179(15), 4850–4858.
Schmidt, C. L. & Shaw, L. (2001). A comprehensive phylogenetic analysis of Rieske and Rieske-type iron-sulfur proteins. Journal of Bioenergetics and Biomembranes, 33(1), 9–26. https://doi.org/10.1023/A:1005616505962.
Shao, Y.-H., Li-Zhong Guo., Yu-Qing Zhang, Hao Yu, Bai-Suo Zhao & Hai-Qiang Pang, W.-D. L. (2018). Glycine betaine monooxygenase, an unusual Rieske-type oxygenase system, catalyzes the oxidative N-Demethylation of glycine betaine in Chromohalobacter salexigens DSM 3043. Applied and Environmental Microbiology, 84(13), 1–18.
Suenaga, H., Goto, M. & Furukawa, K. (2006). Active-site engineering of biphenyl dioxygenase: effect of substituted amino acids on substrate specificity and regiospecificity. Applied Microbiology and Biotechnology, 71(2), 168–176. https://doi.org/10.1007/s00253-005-0135-2.
Summers, R. M., Louie, T. M., Yu, C. L., Gakhar, L., Louie, K. C. & Subramanian, M. (2012). Novel, highly specific N-Demethylases enable bacteria to live on caffeine and related purine alkaloids. Journal of Bacteriology, 194(8), 2041–2049. https://doi.org/10.1128/jb.06637-11.
Summers, R. M., Mohanty, S. K., Gopishetty, S. & Subramanian, M. (2015). Genetic characterization of caffeine degradation by bacteria and its potential applications. Microbial Biotechnology, 8(3), 369–378. https://doi.org/10.1111/1751-7915.12262.
Tanaka, A., Ito, H., Tanaka, R., Tanaka, N. K., Yoshida, K. & Okada, K. (1998). Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proceedings of the National Academy of Sciences, 95(21), 12719–12723. https://doi.org/10.1073/pnas.95.21.12719.
Van Beilen, J. B., Duetz, W. A., Schmid, A. & Witholt, B. (2003). Practical issues in the application of oxygenases. Trends in Biotechnology, 21(4), 170–177. https://doi.org/10.1016/ S0167-7799(03)00032-5.
Van Doren, S. R., Gennis, R. B., Barquera, B. & Crofts, A. R. (1993). Site-directed mutations of conserved residues of the Rieske iron-sulfur subunit of the cytochrome bc1 complex of Rhodobacter sphaeroides blocking or impairing quinol oxidation. Biochemistry, 32(32), 8083–8091. https://doi. org/10.1021/bi00083a005.
Wang, Y., Li, J., & Liu, A. (2017). Oxygen activation by mononuclear nonheme iron dioxygenases involved in the degradation of aromatics. Journal of Biological Inorganic Chemistry, 22(2–3), 395–405. https://doi.org/10.1007/ s00775-017-1436-5.
Wackett, L. P., Kwart, L. D. & Gibson, D. T. (1988). Benzylic monooxygenation catalyzed by toluene dioxygenase from Pseudomonas putida. Biochemistry, 27(4), 1360–1367.
Wolfe, M. D., Altier, D. J., Stubna, A., Popescu, C. V., Münck, E. & Lipscomb, J. D. (2002). Benzoate 1,2-dioxygenase from Pseudomonas putida: single turnover kinetics and regulation of a two-component Rieske dioxygenase. Biochemistry, 41(30), 9611–9626. https://doi.org/10.1021/ bi025912n.
Wu, H., Tian, C., Song, X., Liu, C., Yang, D. & Jiang, Z. (2013). Methods for the regeneration of nicotinamide coenzymes. Green Chemistry, 15(7), 1773–1789. https:// doi.org/10.1039/c3gc37129h.
Yagi, J. M. & Madsen, E. L. (2009). Diversity, abundance, and consistency of microbial oxygenase expression and biodegradation in a shallow contaminated aquifer. Applied and Environmental Microbiology, 75(20), 6478–6487. https://doi.org/10.1128/AEM.01091-09.
Yoder, M. D., Thomas, L. M., Tremblay, J. M., Oliver, R. L., Yarbrough, L. R. & Helmkamp, G. M. (2002). Structure of a multifunctional protein. Journal of Biological Chemistry, 276(12), 9246–9252. https://doi.org/10.1074/ jbc.m010131200.
Yoshiyama-Yanagawa, T., Enya, S., Shimada-Niwa, Y., Yaguchi, S., Haramoto, Y., Matsuya, T., Shiomi, K., Sasakura, Y., Takahashi, S., Asashima, M., Kataoka, H. & Niwa, R. (2011). The conserved Rieske oxygenase DAF-36/Neverland is a novel cholesterol-metabolizing enzyme. Journal of Biological Chemistry, 286(29), 25756–25762. https://doi. org/10.1074/jbc.M111.244384.
Zachos, I., Nowak, C. & Sieber, V. (2019). Biomimetic cofactors and methods for their recycling. Current Opinion in Chemical Biology, 49, 59–66. https://doi.org/10.1016/j. cbpa.2018.10.003.
Zhu, Y., Jameson, E., Crosatti, M., Schafer, H., Rajakumar, K., Bugg, T. D. H. & Chen, Y. (2014). Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proceedings of the National Academy of Sciences, 111(11), 4268–4273. https://doi.org/10.1073/ pnas.1316569111.