2019, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2019; 22 (1)
Epoxidación enzimática de metil ésteres de ácidos grasos de origen vegetal y sus aplicaciones como alternativa para sustituir a los derivados del petróleo
Sustaita-Rodríguez A, Rocha-Gutiérrez BA, García-Triana A, Ramos-Sánchez VH, Beltrán-Piña BG, Chávez-Flores D
Idioma: Español
Referencias bibliográficas: 109
Paginas: 1-17
Archivo PDF: 1245.00 Kb.
RESUMEN
Recientemente, la modificación de aceites vegetales para obtener ésteres metílicos de ácidos grasos (FAMEs) o biodiesel
ha emergido como una alternativa para la sustitución de los derivados del petróleo, esto debido a los problemas
ambientales y de salud que genera su uso. Debido a su estructura química es posible epoxidar estas moléculas y usarlas
directamente para producir plastificantes o lubricantes. Sin embargo, éstas también pueden ser sujetas a modificaciones
para mejorar sus propiedades y el de servir como intermediarias para la síntesis de poliuretanos. Puesto que los métodos
convencionales para la producción de epóxidos también son una fuente potencial de contaminación, se ha sugerido
el uso de catalizadores enzimáticos como una alternativa sostenible o “Verde” para su preparación, ya que permiten
obtener productos con alta pureza y mejores rendimientos. Este artículo presenta una revisión de la literatura disponible
centrándose en la epoxidación enzimática de los FAMEs, así como sus principales aplicaciones.
REFERENCIAS (EN ESTE ARTÍCULO)
Allport, D.C., Gilbert, D.S. & Outterside, S.M. (2003). MDI and TDI: safety, health and the environment; a source book and practical guide. United Kingdom: Wiley.
Anchal, T. M., Patel, A., Chauhan, D. D., Thomas, M. & Patel, J. V. A. (2017). Methodological review on bio-lubricats from vegetable oilbased resources. Renew. Sustain. Energy Rev., 70, 65–70. https://doi.org/10.1016/j. rser.2016.11.105
Aouf, C., Durand, E., Lecomte, J., Figueroa-Ezpinoza, M.C., Dubreucq, E., Fulcranda, H. & Villenueve, P. (2014). The use of lipases as biocatalysts for the epoxidation of fatty acids and phenolic compounds. Green Chem., (16),1740–1754. https://doi.org/10.1039/ C3GC42143K
Arrieta, M. P., Samper, M. D., Jiménez-López, M., Aldas, M. & López, J. (2017). Combined effect of linseed oil and gum rosin as natural additives for PVC. Ind. Crops Prod., (99), 196–204. https://doi.org/10.1016/j. indcrop.2017.02.009
BadischeAnilin- und Soda-Fabrik, BASF. (2013). Ficha técnicade Palatinol DPHP-I®Recuperado el 26 de noviembre de 2018, de: http://www.plasticizers.basf. com/portal/streamer?fid=277353
Balat, M. (2007). Production of Biodiesel from Vegetable Oils: A Survey. Energy Sources Part Recovery Util. Environ. Eff., (29), 895–913. https://doi. org/10.1080/00908310500283359
Bayrak, A., Kiralan, M., Ipek, A., Arslan, N., Cosge, B. & Khawar, K.M. (2014). Fatty Acid Compositions of Linseed (Linumusitatissimum L.) Genotypes of Different Origin Cultivated in Turkey. Biotechnol. & Biotechnol. Eq., 1832-1846. https://doi.org/10.2478/ V10133-010-0034-2
Bello, E. I., Adekanbi, I. T. & Akinbode, F. O. (2016). Production and characterization of coconut (Cocus nucifera) oil and its methyl ester. Eur. J. Pure Appl. Chem., 3(3), 1-11.
Bi, Y., Ding, D. & Wang, D. (2010). Low-melting-point biodiesel derived from corn oil via urea complexation. Bioresour. Technol., (101), 1220–1226. https://doi. org/10.1016/j.biortech.2009.09.036
Biermann, U., Friedt, W., Lang, S., Luhs, W., Machmuller, G., Metzger, J. O., Klass, M. R. & Schafer, H. J. (2000). New syntheses with oils and fats as renewable raw materials for the chemical industry. Angew. Chem. Int. Ed., (39), 2206–2224. https://doi. org/10.1002/1521-3773(20000703)39:13<2206::AIDANIE2206> 3.0.CO;2-P
Borugadda, V. B. & Goud, V. V. (2014). Epoxidation of Castor Oil Fatty Acid Methyl Esters (COFAME) as a Lubricant base Stock Using Heterogeneous Ion-exchange Resin (IR-120) as a Catalyst. Energy Procedia, (54), 75–84. https://doi.org/10.1016/j.egypro.2014.07.249
Campanella, A., Fontanini, C. & Baltanás, M. A. (2008). High yield epoxidation of fatty acid methyl esters with performic acid generated in situ. Chem. Eng. J., (144), 466–475. https://doi.org/10.1016/j.cej.2008.07.016
Capel-Sánchez, M. C., Campos-Martin, J. M., Fierro, J. L. G., de Frutos, M. P. & Polo, A. P. (2000). Effective alkene epoxidation with dilute hydrogen peroxide on amorphous silica-supported titanium catalysts. Chem. Commun., 855–856. https://doi.org/10.1039/b000929f
Carbonell-Verdu, A., García-Sanoguera, D., Jordá-Vilaplana, A., Sánchez-Nacher, L. & Balart, R. (2016). A new biobased plasticizer for poly (vinyl chloride) based on epoxidized cottonseed oil. J. Appl. Polym. Sci., (133), 43642.https://doi.org/10.1002/app.43642
Chemical book (2006). Ficha técnica de methyl-9,10-12,3- diepoxystearate. Recuperado el 27 de noviembre de 2018, de: https://www.chemicalbook.com/ ChemicalProductProperty_US_CB21386734.aspx
Chen, J., Liu, Z., Jiang, J., Nie, X., Zhou, Y. & Murray, R. E. (2015). A novel biobased plasticizer of epoxidized cardanol glycidyl ether: synthesis and application in soft poly (vinyl chloride) films. RSC Adv., (5), 56171– 56180. https://doi.org/10.1039/C5RA07096A
Chevron Phillips Chemical Company LP. (2011). Ficha técnica de Synfluid® PAO 2 cSt. Recuperado el 26 de noviembre de 2018, de: http://www.cpchem.com/bl/ pao/en-us/tdslibrary/Synfluid%20PAO%202%20cSt. pdf
Corrêa, F. A., Sutili, F. K., Miranda, L.S.M., Rodrigo, G.F.L., De Souza, O. M. A. & Leal, I. C. R. (2012). Epoxidation of oleic acid catalyzed by PSCI-Amano lipase optimized by experimental design. J. Mol. Catal. B Enzym., (81), 7–11. https://doi.org/10.1016/j. molcatb.2012.03.011
Dalbey, W. E., McKee, R. H., Goyat, K. O., Biles, R. W., Murray, J. & White, R. (2014). Acute, Subchronic, and Developmental Toxicological Properties of Lubricating Oil Base Stocks. Int. J. Toxicol., (33), 110S-135S. https://doi.org/10.1177/1091581813517725
Dalbey, W. E. & Biles, R. W. (2003). Respiratory Toxicology of Mineral Oils in Laboratory Animals. Appl. Occup. Environ. Hyg., (18), 921–929. https://doi. org/10.1080/10473220390237548
Danov, S. M., Kazantev, O. A., Esipovich, A. L., Belousov, A. S., Rogozhin, A. E. & Kanakov, E. A. (2017). Recent advances in the field of selective epoxidation of vegetable oils and their derivatives: a review and perspective. Catal. Sci. Technol., (7), 3659–3675. https://doi.org/10.1039/C7CY00988G
Del Rio, E., Galià, M., Cádiz, V., Lligadas, G. & Ronda, J. C. (2010). Polymerization of epoxidized vegetable oil derivatives: Ionic-coordinative polymerization of methylepoxyoleate. J. Polym. Sci. Part Polym. Chem., (48), 4995–5008. https://doi.org/10.1002/pola.24297
Desroches, M., Escouvois, M., Auvergne, R., Caillol, S. & Boutevin, B. (2012). From Vegetable Oils to Polyurethanes: Synthetic Routes to Polyols and Main Industrial Products. Polym. Rev., (52), 38–79. https:// doi.org/10.1080/15583724.2011.640443
Dyer, J. M., Stymne, S., Green, A. G. & Carlsson, A. S. (2008). High-value oils from plants. Plant J., (54), 640–655. https://doi.org/10.1111/j.1365-313X.2008.03430.x El-Araby, R., Amin, A., El Morsi, A. K., El-Ibiari, N. N. &
El-Diwani, G. I. (2017). Study on the characteristics of palm oil–biodiesel–diesel fuel blend. Egypt. J. Pet., (27), 187-194. https://doi.org/10.1016/j. ejpe.2017.03.002
Fukada, H. & Kond, A. (2001). Biodiesel Fuel Production by Transesterification of Oils. Journal of Bioscience and Bioengineering, 92(5), 405-416. https://doi. org/10.1016/S1389-1723(01)80288-7
Galli, F., Nucci, S., Pirola, C. & Bianchi, C. L. (2014). Epoxy methyl soyate as bio-plasticizer: two different preparation strategies. Chem. Eng. Trans., (37), 601– 606. https://doi.org/10.3303/CET1437101
Gan, L. H., Ooi, K. S., Goh, S. H., Gan, L. M. & Leong, Y. C.(1995). Epoxidized esters of palm olein as plasticizers for poly(vinyl chloride). Eur. Polym. J., (31),719–724. https://doi.org/10.1016/0014-3057(95)00031-3
Garcés, R., Martínez-Force, E. & Salas, J. J. (2011). Vegetable oil basestocks for lubricants. Grasas Aceites, (62), 21– 28. https://doi.org/10.3989/gya.045210
Gelalcha, F. G., Bitterlich, B., Anilkumar, G., Tse, M. K. & Beller, M. (2007). Iron-Catalyzed Asymmetric Epoxidation of Aromatic Alkenes Using Hydrogen Peroxide. Angew. Chem. Int. Ed., (46), 7293–7296. https://doi.org/10.1002/anie.200701235
Gerbase, A. E., Gregório, J. R., Martinelli, M., Brasil, M. C. & Mendes, A. N. F. (2002). Epoxidation of soybean oil by the methyltrioxorhenium-CH2Cl2/H2O2 catalytic biphasic system. J. Am. Oil Chem. Soc., 79, 179–181.
Goud, V. V., Pradhan, N. C. & Patwardhan, A. V. (2006). Epoxidation of karanja (Pongamia glabra) oil by H2O2. J. Am. Oil Chem. Soc, (83), 635–640. https:// doi.org/10.1007/s11746-006-1250-7
Gruia, A., Raba, D. N., Dumbrava, D., Moldovan, C., Bordean, D. & Mateescu, C. (2012). Fatty acids composition and oil characteristics of linseed (Linumusitatissimum L.) from Romania. J. Agroaliment. Process. Technol., (18), 136–140.
Guldhe, A., Singh, B., Mutanda, T., Permaul, K. & Bux, F. (2015). Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches. Renew. Sustain. Energy Rev., (41), 1447–1464. https://doi. org/10.1016/j.rser.2014.09.035
Gülüm, M. & Bilgin, A. (2015). Density, flash point and heating value variations of corn oil biodiesel–diesel fuel blends. Fuel Process. Technol., (134), 456–464. https://doi.org/10.1016/j.fuproc.2015.02.026
Guncheva, M. & Zhiryakova, D. (2011). Catalytic properties and potential applications of Bacillus lipases. J. Mol. Catal. B Enzym., (68), 1–21. https://doi.org/10.1016/j. molcatb.2010.09.002
Güner, S. F., Yağcı, Y. & Erciyes, T. A. (2006). Polymers from triglyceride oils. Prog. Polym. Sci., (31),633–670. https://doi.org/10.1016/j.progpolymsci.2006.07.001
Gunstone, F. D., Harwood, J. L. & Dijkstra, A. J. (2007). The lipid handbook with CD-ROM (3rd ed). Boca Raton: CRC Press. https://doi.org/10.1201/9781420009675
He, W., Fang, Z., Tian, Q., Ji, D., Zhang, K. & Guo, K. (2015). Two-stage continuous flow synthesis of epoxidized fatty acid methyl esters in a micro-flow system. Chem. Eng. Process. Process Intensif., (96), 39–43. https:// doi.org/10.1016/j.cep.2015.07.028.
Hilker, I., Bothe, D., Prüss, J. & Warnecke, H.-J. (2001). Chemo-enzymatic epoxidation of unsaturated plant oils. Chem. Eng. Sci., 56, 427–432. https://doi. org/10.1016/S0009-2509(00)00245-1
Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E. & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renew. Sustain. Energy Rev., (16), 143–169. https://doi. org/10.1016/j.rser.2011.07.143
Holser, R. A. (2008). Transesterification of epoxidized soybean oil to prepare epoxy methyl esters. Ind. Crops Prod., 27, 130–132. https://doi.org/10.1016/j. indcrop.2007.06.001
Hou, C. T. (2006). Monooxygenase system of Bacillus megaterium ALA2: Studies on linoleic acid epoxidation products. J. Am. Oil Chem. Soc., (83), 677–681. https://doi.org/10.1007/s11746-006-5023-0
Ionescu, M. (2005). Chemistry and Technology of Polyols for Polyurethanes. United Kingdom: Smithers Rapra technology.
Jiang, J.-J. & Tan, C.-S. (2012). Biodiesel production from coconut oil in supercritical methanol in the presence of cosolvent. J. Taiwan Inst. Chem. Eng., (43), 102–107. https://doi.org/10.1016/j.jtice.2011.07.004
Kandula, S., Stolp, L., Grass, M., Woldt, B. & Kodali, D. (2015). Functionalization of soy fatty acid alkyl esters as bioplasticizers. J. Vinyl Addit. Technol., (23), 93– 105. https://doi.org/10.1002/vnl.21486
Karmakar, G., Ghosh, P. & Sharma, B. (2017). Chemically Modifying Vegetable Oils to Prepare Green Lubricants. Lubricants, (5), 44. https://doi.org/10.3390/ lubricants5040044
Kirk, R.R. & Othmer, D.F. (2007). Encyclopedia of Chemical Technology, 5th Edition. New York: Wiley.
Kozlowski, R. R. & Storzum, U. (2005). Di(2-propylheptyl) phthalate: A new plasticizer choice for PVC compounders. J. Vinyl Addit. Technol., 11, 155–159. https://doi.org/10.1002/vnl.20055.
Lehnen, D. R., Guzatto, R., Defferrari, D., Albornoz, L. L. & Samios, D. (2014). Solvent-free biodiesel epoxidation. Environ. Chem. Lett., (12), 335–340. https://doi. org/10.1007/s10311-013-0448-9
Li, W. & Wang, X. (2015). Bio-lubricants Derived from Waste Cooking Oil with Improved Oxidation Stability and Low-temperature Properties. J. Oleo Sci., (64), 367– 374. https://doi.org/10.5650/jos.ess14235
Lligadas, G., Ronda, J. C., Galià, M., Biermann, U. & Metzger, J. O. (2006). Synthesis and characterization of polyurethanes from epoxidized methyl oleate based polyether polyols as renewable resources. J. Polym. Sci. Part Polym. Chem., (44), 634–645. https://doi. org/10.1002/pola.21201
Lu, H., Sun, S., Bi, Y. & Yang, G. (2012). Enzymatic epoxidation of biodiesel optimized by response surface methodology. Afr. J. Biotechnol., 11 (59), 12356- 12363. http://dx.doi.org/10.5897/AJB11.3831
Lu, H., Sun, S., Bi, Y., Yang, G., Ma, R. & Yang, H. (2010). Enzymatic epoxidation of soybean oil methyl esters in the presence of free fatty acids. Eur. J. Lipid Sci. Technol., 112, 1101–1105. https://doi.org/10.1002/ ejlt.201000041
Lv, N., Fang, Z., Sun, Q., Qiu ,C., & Guo, K. (2018). Epoxidation of Methyl Oleate and Subsequent Ring- Opening Catalyzed by Lipase from Candida sp. 99- 125. Eur. J. Lipid Sci. Technol., (120), 1700257. https:// doi.org/10.1002/ejlt.201700257
Martini, D. S., Braga, B. A. & Samios, D. (2009). On the curing of linseed oil epoxidized methyl esters with different cyclic dicarboxylic anhydrides. Polymer, (50), 2919– 2925. https://doi.org/10.1016/j.polymer.2009.03.058
Mata, T. M., Sousa, I. R. B. G., Vieira, S. S. & Caetano, N. S. (2012). Biodiesel Production from Corn Oil via Enzymatic Catalysis with Ethanol. Energy Fuels, (26), 3034–3041. https://doi.org/10.1021/ef300319f
McNutt, J. & He, Q. (2016). Development of biolubricants from vegetable oils via chemical modification. J. Ind. Eng. Chem., (36), 1–12. https://doi.org/10.1016/j. jiec.2016.02.008
Meeker, J. D., Sathyanarayana, S. & Swan, S. H. (2009). Phthalates and other additives in plastics: human exposure and associated health outcomes. Philos. Trans. R. Soc. B Biol. Sci., (364), 2097–2113. https:// doi.org/10.1098/rstb.2008.0268
Méndez-Sánchez, D., Ríos-Lombardía, N., Gotor, V. & Gotor-Fernández, V. (2014). Chemoenzymatic epoxidation of alkenes based on peracid formation by a Rhizomucormiehei lipase-catalyzed perhydrolysis reaction. Tetrahedron, (70), 1144–1148. https://doi. org/10.1016/j.tet.2013.12.084
Milchert, E., Malarczyk, K. & Kłos, M. (2015). Technological Aspects of Chemoenzymatic epoxidation of Fatty Acids, Fatty Acid Esters and Vegetable Oils: A Review. Molecules, (20), 21481–21493. https://doi. org/10.3390/molecules201219778.
MohdNorhisham, S. Maznee, T. I. T.N., Ain, H. N., Devi, P. P. K., Srihanum, A., Norhayati, N. M., Yeong, S. K., Hazimah, A. H., Schiffman, C. M., Sendijarevic, M., Sendijarevic, V. & Sendijarevic ,I. (2017). Soft polyurethane elastomers with adhesion properties based on palm olein and palm oil fatty acid methyl ester polyols. Int. J. Adhes. Adhe, (73), 38–44. https:// doi.org/10.1016/j.ijadhadh.2016.10.012
Montero de Espinosa, L. & Meier, M. A. R. (2011). Plant oils: The perfect renewable resource for polymer science?! Eur. Polym. J., (47), 837–852.https://doi.org/10.1016/j. eurpolymj.2010.11.020
Montoya, C. Cochard, B., Flori, A., Cros, D., López, R., Cuéllar, T., Espeout, S., Syaputra, I.,Villenueve, P., Pina, M., Ritter, E., Leory, T. & Billote, N. (2014). Genetic Architecture of Palm Oil Fatty Acid Composition in Cultivated Oil Palm (Elaeisguineensis Jacq.) Compared to Its Wild Relative E. oleifera (H.B.K) Cortés. PLoS ONE, (9), e95412. https://doi. org/10.1371/journal.pone.0095412
Mushtag, M., Tan, I. B., Devi, C., Majidaje S., Nadeem, M. & Lee, S. (2013) Epoxidation of Fatty Acid Methyl Esters derived from Jatropha oil. Grasas y aceites., (64), 103- 114. https://doi.org/10.1109/NatPC.2011.6136253
Mushtaq, M., Tan, I. M., Sagir, M., SulemanTahir, M. & Pervaiz, M. (2016). A novel hybrid catalyst for the esterification of high FFA in Jatropha oil for biodiesel production. Grasas Aceites, (67), e150. http://dx.doi. org/10.3989/gya.0216161.
Mustata, F., Nita, T. & Bicu, I. (2014). The curing reaction of epoxidized methyl esters of corn oil with Diels–Alder adducts of resin acids. The kinetic study and thermal characterization of crosslinked products. J. Anal. Appl. Pyrolysis, (108), 254–264. https://doi.org/10.1016/j. jaap.2014.04.007
Nakpong, P. & Wootthikanokkhan, S. (2010). High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand. Renew. Energy, (35), 1682– 1687. https://doi.org/10.1016/j.renene.2009.12.004
National Center for Biotechnology Information, NCBI. PubChemCompoundDatabase; CID=8343. Recueprado el 25 de noviembre de 2018, de: https:// pubchem.ncbi.nlm.nih.gov/compound/8343
Nicolau A., Samios, D., Piatrick, C. M. S., Reiznautt, B. R., Martini, D. D. & Chagas, A. L. (2012). On the polymerisation of the epoxidized biodiesel: The importance of the epoxy rings position, the process and the products. Eur. Polym. J., (48), 1266–1278. https:// doi.org/10.1016/j.eurpolymj.2012.04.013
Noureddini, H., Teoh, B. C. & Davis Clements, L. (1992). Viscosities of vegetable oils and fatty acids. J. Am. Oil Chem. Soc., (69), 1189–1191.
Olusegun, D. S., Solomon, O. G., & Suleiman A. E. Optimization of coconut oil ethyl esters reaction variables and prediction model of its blends with diesel fuel for density and kinematic viscosity. Biofuels, 7(7), 1-13. https://doi.org/10.1080/17597269.2016.1192445
Orellana-Coca, C., Törnvall, U., Adlercreutz, D., Mattiasson, B. & Hatti-Kaul, R. (2005).Chemo-enzymatic epoxidation of oleic acid and methyl oleate in solventfree medium. Biocatal. Biotransformation, 23, 431– 437. https://doi.org/10.1080/10242420500389488
Petrović, Z. S., Zlatanić, A., Lava, C. C. & Sinadinović-Fišer, S. (2002). Epoxidation of soybean oil in toluene with per (104), 293–299. https://doi.org/10.1002/1438- 9312(200205)104:5<293::AID-EJLT293>3.0.CO;2-W
Piazza, G. J., Nuñez, A. & Foglia, T. A. (2003). Epoxidation of fatty acids, fatty methyl esters, and alkenes by immobilized oat seed peroxygenase. Journal of Molecular Catalysis B: Enzymatic, 21(3), 143-151. https://doi.org/10.1016/S1381-1177(02)00122-4
Poças, M. de F. & Hogg, T. (2007). Exposure assessment of chemicals from packaging materials in foods: a review. Trends Food Sci. Technol., (18), 219–230. https://doi. org/10.1016/j.tifs.2006.12.008
Ramos, M. J., Fernández, C. M., Casas, A., Rodríguez, L. & Pérez, Á. (2009). Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol., (100), 261–268. https://doi.org/10.1016/j. biortech.2008.06.039
Rani, S., Joy, M. L. & Nair, K. P. (2015). Evaluation of physiochemical and tribological properties of rice bran oil – biodegradable and potential base stoke for industrial lubricants. Ind. Crops Prod., (65),328–333. https://doi.org/10.1016/j.indcrop.2014.12.020
Rashid, U., Anwar, F., Moser, B. R. & Ashraf, S. (2008). Production of sunflower oil methyl esters by optimized alkali-catalyzed methanolysis. Biomass Bioenergy, (32), 1202–1205. https://doi.org/10.1016/j. biombioe.2008.03.001
Royal Society of Chemistry. Chemspidercompounddatabase CID: 473467. Recuperado el 27 de noviembre de 2018, de: http://www.chemspider.com/Chemical- Structure.473467.html
Rudnick, L.R. (2006). Synthetics, Mineral Oils,and Bio- Based LubricantsChemistry and Technology, USA: Taylor and Francis Group.
Rüsch gen. Klaas, M. & Warwel, S. (1999). Complete and partial epoxidation of plant oils by lipase-catalyzed perhydrolysis. Ind. Crops Prod., (9),125–132. https:// doi.org/10.1016/S0926-6690(98)00023-5
Salih, N., Salimon, J., Abdullah, B. M. & Yousif, E. (2017).Thermo-oxidation, friction-reducing and physicochemical properties of ricinoleic acid baseddiester biolubricantsArab. J. Chem., 10, S2273–S2280. https://doi.org/10.1016/j.arabjc.2013.08.002
Sánchez, N., Sánchez, R., Encinar, J. M., González, J. F. & Martínez, G. (2015). Complete analysis of castor oil methanolysis to obtain biodiesel. Fuel, (147), 95–99. https://doi.org/10.1016/j.fuel.2015.01.062
Sanjid A.,Masjuki, H.H., Kalam, M.A., Ashrafur Rahman, S.M.,,Abedin, M.J., & Palash, S.M. (2014). Production of palm and jatropha based biodiesel and investigation of palm-jatropha combined blend properties, performance, exhaust emission and noise in an unmodified diesel engine. J. Clean. Prod., (65), 295– 303. https://doi.org/10.1016/j.jclepro.2013.09.026.
Santos, E. M., Piovesan, N. D., de Barros, E. G. & Moreira, M. A. (2013). Low linolenic soybeans for biodiesel: Characteristics, performance and advantages. Fuel, (104), 861–864. https://doi.org/10.1016/j. fuel.2012.06.014
Schneider, R. de C. S., Nascimento, M. de G., dos Santos- Nunes, M. R. & Lara, L. R. S. (2009). Chemo- Enzymatic Epoxidation of Sunflower Oil Methyl Esters. J. Braz. Chem. Soc., (20), 1472-1477. http:// dx.doi.org/10.1590/S0103-50532009000800013
Sejidov, F. T., Mansoori, Y. & Goodarzi, N. (2005). Esterification reaction using solid heterogeneous acid catalysts under solvent-less condition. J. Mol. Catal. Chem., (240), 186–190. https://doi.org/10.1016/j. molcata.2005.06.048
Severiano, A., Hagström, A. & Hatti-Kaul, R. (2008). Chemo-enzymatic epoxidation of rapeseed methyl esters: Parameters influencing the reaction and enzyme stability. Recuperado el 27 de noviembre de 2018, de; https://pdfs.semanticscholar.org/ a8b3/9c5ef31059472f5b3f67b00a59ec1ff80a20.pdf
Shah, B. L. & Shertukde, V. V. (2003). Effect of plasticizers on mechanical, electrical, permanence, and thermal properties of poly (vinyl chloride). J. Appl. Polym. Sci., (90), 3278–3284. https://doi.org/10.1002/app.13049
Sharma, B. K., Doll, K. M. & Erhan, S. Z. (2007). Oxidation, friction reducing, and low temperature properties of epoxy fatty acid methyl esters. Green Chem., (9), 469- 474.https://doi.org/10.1039/B614100E
Sharma, B. K., Doll, K. M. & Erhan, S. Z. (2008). Ester hydroxy derivatives of methyl oleate: tribological, oxidation and low temperature properties. Bioresour. Technol., (99), 7333–7340. https://doi.org/ 10.1016/j. biortech.2007.12.057
Sharma, R. V., Somidi, A. K. R. & Dalai, A. K. (2015). Preparation and Properties Evaluation of Biolubricants Derived from Canola Oil and Canola Biodiesel. J. Agric. Food Chem., (63), 3235–3242. https://doi. org/10.1021/jf505825k
Silva, W. S. D., Lapis, A. A. M., Suárez, P. A. Z. & Neto, B. A. D. (2011). Enzyme-mediated epoxidation of methyl oleate supported by imidazolium-based ionic liquids. J. Mol. Catal. B Enzym., (68), 98–103. https://doi. org/10.1016/j.molcatb.2010.09.019
Somheil, T. (2014). Study: global PVC demand to grow 3.2% annually through 2021. Recuperado el 11 de mayo de 2018, de: https://www.plasticstoday.com/materials/ study-global-pvc-demand-grow-32-annuallythrough- 2021/35040108220973
Soni, S. & Agarwal, M. (2014). Lubricants from renewable energy sources – a review. Green Chem. Lett. Rev., (7), 359–382. https://doi.org/10.1080/17518253.2014.959 565
Sonnet, P. E., Lankin, M. E. & McNeill, G. P. (1995). Reactions of dioxiranes with selected oleochemicals. J. Am. Oil Chem. Soc., (72), 199–204. https://doi.org/10.1007/ BF02638900
Sustaita-Rodríguez, A., Ramos-Sánchez, V., Camacho- Dávila, A. A., Zaragoza-Galán, G., Espinoza-Hicks, J.C. & Chávez-Flores, D. (2018). Lipase catalyzed epoxidation of fatty acid methyl esters derived from unsaturated vegetable oils in absence of carboxylic acid. Chem. Cent. J., (12), 12-29. https://doi. org/10.1186/s13065-018-0409-2
Swern, D. (1947). Electronic interpretation of the reaction of olefins with organic per-acids. J. Am. Chem. Soc., (69), 1692–1698. https://doi.org/10.1021/ja01199a037
Tang, Q., Popowicz, G.M., Wang, X., Liu, J., Pavlidis, J. V. & Wang. Y. (2016). Lipase-Driven Epoxidation Is A Two-Stage Synergistic Process. Chemistry Select, (1), 836–839. https://doi.org/10.1002/slct.201600254
Tong, K.-H., Wong, K.-Y. & Chan, T. H. (2005). A chemoenzymic approach to the epoxidation of alkenes in aqueous media. Tetrahedron, (61), 6009–6014. https://doi.org/10.1016/j.tet.2005.04.055
Torres, M., Jiménez-Oses, G., Mayoral, J. A., Pires, E., Blanco, R.M. & Fernández, O. (2012). Evaluation of several catalytic systems for the epoxidation of methyl oleate using H2O2 as oxidant. Catal. Today, (195), 76– 82. https://doi.org/10.1016/j.cattod.2012.05.005
Urbanus, J. H., Lobo, R. C. & Riley, A. J. (2003). European Hazard Classification Advice for Crude Oil–Derived Lubricant Base Oils Compared with the Proposed Mineral Oil Mist TLV®. Appl. Occup. Environ. Hyg., (18), 815–817. https://doi. org/10.1080/10473220390237304
Vieira, M. G. A., da Silva, M. A., dos Santos, L. O. & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. Eur. Polym. J., (47), 254– 263. https://doi.org/10.1016/j.eurpolymj.2010.12.011
Wang, J., Zhao, X. & Liu, D. (2017). Preparation of Epoxidized Fatty Acid Methyl Ester with in situ Auto-Catalyzed Generation of Performic Acid and the Influence of Impurities on Epoxidation. Waste Biomass Valorization, 9(10), 1881-1891. https://doi. org/10.1007/s12649-017-9945-6
White, M. C., Doyle, A. G. & Jacobsen, E. N. (2001). A Synthetically Useful, Self-Assembling MMO Mimic System for Catalytic Alkene Epoxidation with Aqueous H 2 O 2. J. Am. Chem. Soc., (123), 7194–7195. https:// doi.org/10.1021/ja015884g
Wilde, N., Pelz, M., Gebhardt, S. G. & Gläser, R. (2015). Highly efficient nano-sized TS-1 with micromesoporosity from desilication and recrystallization for the epoxidation of biodiesel with H2O2. Green Chem., (17), 3378–3389. https://doi.org/10.1039/ C5GC00406C
Yaakob, Z., Mohammad, M., Alherbawi, M., Alam, Z. & Sopian, K. (2013). Overview of the production of biodiesel from Waste cooking oil. Renew. Sustain. Energy Rev., (18), 184–193. https://doi.org/10.1016/j. rser.2012.10.016
Zheng, T., Wu, Z., Xie, Q., Fang, J., Hu, Y., Lu M., Xia, F., Nie, Y. & Jianbing, J. (2018). Structural modification of waste cooking oil methyl esters as cleaner plasticizer to substitute toxic dioctyl phthalate. J. Clean. Pro., (186), 1021–1030. https://doi.org/10.1016/j. jclepro.2018.03.175