2020, Número 1
<< Anterior Siguiente >>
salud publica mex 2020; 62 (1)
Genómica de rotavirus. Impacto en salud pública
López S, Arias CF
Idioma: Español
Referencias bibliográficas: 49
Paginas: 25-35
Archivo PDF: 233.36 Kb.
RESUMEN
Con la introducción de las vacunas de rotavirus Rotarix (RV1)
o RotaTeq (RV5) en programas nacionales de vacunación de
diversos países, surgió la preocupación de que la presión
inmune generada condujera al aumento en la prevalencia
de genotipos virales no incluidos en las vacunas, o bien
del surgimiento de nuevas cepas que pudieran escapar a la
respuesta inmune protectora inducida por la vacunación.
La variación natural de los rotavirus ha hecho que sea muy
difícil distinguir si el cambio en las cepas circulantes se debe
a la presión selectiva impuesta por las vacunas o bien a la
fluctuación natural de las cepas. Si acaso ha habido una presión
selectiva, ésta ha sido hasta ahora baja. Sin embargo, es
importante mantener la vigilancia epidemiólogica y poner
atención al surgimiento de cepas resistentes a la inmunidad,
en particular en países en desarrollo en los que se ha descrito
una mayor diversidad viral.
REFERENCIAS (EN ESTE ARTÍCULO)
Estes MK, Greenberg HB. Rotaviruses. En: Knipe DM, Howley PM, eds. Fields Virology. Philadelphia: Lippincott Williams & Wilkins, 2013:1347-401.
Aoki ST, Settembre EC, Trask SD, Greenberg HB, Harrison SC, Dormitzer PR. Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab. Science. 2009;324(5933):1444-7. https://doi.org/10.1126/ science.1170481
Dormitzer PR, Sun ZY, Wagner G, Harrison SC. The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J. 2002;21(5):885-97. https://doi.org/10.1093/emboj/21.5.885
Banyai K, Kemenesi G, Budinski I, Foldes F, Zana B, Marton S, et al. Candidate new rotavirus species in Schreiber’s bats, Serbia. Infect Genet Evol. 2017;48:19-26. https://doi.org/10.1016/j.meegid.2016.12.002
Matthijnssens J, Otto PH, Ciarlet M, Desselberger U, Van Ranst M, Johne R. VP6-sequence-based cutoff values as a criterion for rotavirus species demarcation. Arch Virol. 2012;157(6):1177-82. https://doi.org/10.1007/ s00705-012-1273-3
Mihalov-Kovacs E, Gellert A, Marton S, Farkas SL, Feher E, Oldal M, et al. Candidate new rotavirus species in sheltered dogs, Hungary. Emerg Infect Dis. 2015;21(4):660-3. https://doi.org/10.3201/eid2104.141370
Leuven KU. Rotavirus classification working group 2017 [citado agosto 2018]. Disponible en: https://rega.kuleuven.be/cev/viralmetagenomics/ virus-classification/rcwg
Gentsch JR, Laird AR, Bielfelt B, Griffin DD, Banyai K, Ramachandran M, et al. Serotype diversity and reassortment between human and animal rotavirus strains: implications for rotavirus vaccine programs. J Infect Dis. 2005;192(suppl 1):S146-59. https://doi.org/10.1086/431499
Matthijnssens J, Heylen E, Zeller M, Rahman M, Lemey P, Van Ranst M. Phylodynamic analyses of rotavirus genotypes G9 and G12 underscore their potential for swift global spread. Mol Biol Evol. 2010;27(10):2431-6. https://doi.org/10.1093/molbev/msq137
Santos N, Hoshino Y. Global distribution of rotavirus serotypes/genotypes and its implication for the development and implementation of an effective rotavirus vaccine. Rev Med Virol. 2005;15(1):29-56. https://doi. org/10.1002/rmv.448
Matthijnssens J, Ciarlet M, Heiman E, Arijs I, Delbeke T, McDonald SM, et al. Full genome-based classification of rotaviruses reveals a common origin between human Wa-Like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. J Virol. 2008;82(7):3204-19. https:// doi.org/10.1128/JVI.02257-07
Cortese MM, Parashar UD, Centers for Disease Control and Prevention. Prevention of rotavirus gastroenteritis among infants and children: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2009;58(RR-2):1-25. Disponible en: www. ncbi.nlm.nih.gov/pubmed/19194371
Parashar UD, Gibson CJ, Bresee JS, Glass RI. Rotavirus and severe childhood diarrhea. Emerg Infect Dis. 2006;12(2):304-6. https://doi. org/10.3201/eid1202.050006
Matthijnssens J, Joelsson DB, Warakomski DJ, Zhou T, Mathis PK, van Maanen MH, et al. Molecular and biological characterization of the 5 human-bovine rotavirus (WC3)-based reassortant strains of the pentavalent rotavirus vaccine, RotaTeq. Virology. 2010;403(2):111-27. https://doi. org/10.1016/j.virol.2010.04.004
Ward RL, Bernstein DI. Rotarix: a rotavirus vaccine for the world. Clin Infect Dis. 2009;48(2):222-8. https://doi.org/10.1086/595702
Gray J. Rotavirus vaccines: safety, efficacy and public health impact. J Intern Med. 2011;270(3):206-14. https://doi.org/10.1111/j.1365- 2796.2011.02409.x
Armah GE, Sow SO, Breiman RF, Dallas MJ, Tapia MD, Feikin DR, et al. Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in sub-Saharan Africa: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;376(9741):606-14. https://doi.org/10.1016/S0140-6736(10)60889-6
Madhi SA, Cunliffe NA, Steele D, Witte D, Kirsten M, Louw C, et al. Effect of human rotavirus vaccine on severe diarrhea in African infants. N Engl J Med. 2010;362(4):289-98. https://doi.org/10.1056/NEJMoa0904797
Phua KB, Lim FS, Lau YL, Nelson EA, Huang LM, Quak SH, et al. Safety and efficacy of human rotavirus vaccine during the first 2 years of life in Asian infants: randomised, double-blind, controlled study. Vaccine. 2009;27(43):5936-41. https://doi.org/10.1016/j.vaccine.2009.07.098
Zaman K, Dang DA, Victor JC, Shin S, Yunus M, Dallas MJ, et al. Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in Asia: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;376(9741):615-23. https://doi. org/10.1016/S0140-6736(10)60755-6
Doro R, Laszlo B, Martella V, Leshem E, Gentsch J, Parashar U, et al. Review of global rotavirus strain prevalence data from six years post vaccine licensure surveillance: is there evidence of strain selection from vaccine pressure? Infect Genet Evol. 2014;28:446-61. https://doi.org/10.1016/j. meegid.2014.08.017
Correia JB, Patel MM, Nakagomi O, Montenegro FM, Germano EM, Correia NB, et al. Effectiveness of monovalent rotavirus vaccine (Rotarix) against severe diarrhea caused by serotypically unrelated G2P[4] strains in Brazil. J Infect Dis. 2010;201(3):363-9. https://doi.org/10.1086/649843
Pelaez-Carvajal D, Cotes-Cantillo K, Paternina-Caicedo A, Gentsch J, de la Hoz-Restrepo F, Patel M. Characterization of rotavirus genotypes before and after the introduction of a monovalent rotavirus vaccine in Colombia. J Med Virol. 2014;86(6):1083-6. https://doi.org/10.1002/jmv.23899
Quaye O, McDonald S, Esona MD, Lyde FC, Mijatovic-Rustempasic S, Roy S, et al. Rotavirus G9P[4] in 3 countries in Latin America, 2009- 2010. Emerg Infect Dis. 2013;19(8):1332-3. https://doi.org/10.3201/ eid1908.130288
Bucardo F, Nordgren J. Impact of vaccination on the molecular epidemiology and evolution of group A rotaviruses in Latin America and factors affecting vaccine efficacy. Infect Genet Evol. 2015;34:106-13. https://doi. org/10.1016/j.meegid.2015.06.013
Yen C, Figueroa JR, Uribe ES, Carmen-Hernandez LD, Tate JE, Parashar UD, et al. Monovalent rotavirus vaccine provides protection against an emerging fully heterotypic G9P[4] rotavirus strain in Mexico. J Infect Dis. 2011;204(5):783-6. https://doi.org/10.1093/infdis/jir390
Benhafid M, Elomari N, Azzouzi-Idrissi M, Rguig A, Gentsch JR, Parashar U, et al. Effect of monovalent rotavirus vaccine on rotavirus disease burden and circulating rotavirus strains among children in Morocco. J Med Virol. 2015;87(6):944-53. https://doi.org/10.1002/jmv.24122
De Grazia S, Doro R, Bonura F, Marton S, Cascio A, Martella V, et al. Complete genome analysis of contemporary G12P[8] rotaviruses reveals heterogeneity within Wa-like genomic constellation. Infect Genet Evol. 2016;44:85-93. https://doi.org/10.1016/j.meegid.2016.06.039
Delogu R, Ianiro G, Camilloni B, Fiore L, Ruggeri FM. Unexpected spreading of G12P[8] rotavirus strains among young children in a small area of central Italy. J Med Virol. 2015;87(8):1292-302. https://doi. org/10.1002/jmv.24180
González-Ochoa G, Quintero-Ochoa GJ, Calleja-García PM, Rosas- Rodríguez JA, Vírgen-Ortiz A, Tamez-Guerra P. Detection of emerging rotavirus G12P[8] in Sonora, Mexico. Acta Virol. 2016;60(2):136-42. https:// doi.org/10.4149/av_2016_02_136
Lartey BL, Damanka S, Dennis FE, Enweronu-Laryea CC, Addo-Yobo E, Ansong D, et al. Rotavirus strain distribution in Ghana pre- and postrotavirus vaccine introduction. Vaccine. 2018;36(47):7238-42. https://doi. org/10.1016/j.vaccine.2018.01.010
Oluwatoyin-Japhet M, Adeyemi-Adesina O, Famurewa O, Svensson L, Nordgren J. Molecular epidemiology of rotavirus and norovirus in Ile-Ife, Nigeria: high prevalence of G12P[8] rotavirus strains and detection of a rare norovirus genotype. J Med Virol. 2012;84(9):1489-96. https://doi. org/10.1002/jmv.23343
Tort LF, Victoria M, Lizasoain AA, Castells M, Maya L, Gomez MM, et al. Molecular epidemiology of group A rotavirus among children admitted to hospital in Salto, Uruguay, 2011-2012: first detection of the emerging genotype G12. J Med Virol. 2015;87(5):754-63. https://doi.org/10.1002/ jmv.24123
Steyer A, Sagadin M, Kolenc M, Poljsak-Prijatelj M. Molecular characterization of rotavirus strains from pre- and post-vaccination periods in a country with low vaccination coverage: the case of Slovenia. Infect Genet Evol. 2014;28:413-25. https://doi.org/10.1016/j.meegid.2014.06.021
Mukaratirwa A, Berejena C, Nziramasanga P, Ticklay I, Gonah A, Nathoo K, et al. Distribution of rotavirus genotypes associated with acute diarrhoea in Zimbabwean children less than five years old before and after rotavirus vaccine introduction. Vaccine. 2018;36(47):7248-55. https://doi. org/10.1016/j.vaccine.2018.03.069
Jere KC, Chaguza C, Bar-Zeev N, Lowe J, Peno C, Kumwenda B, et al. Emergence of Double- and Triple-Gene Reassortant G1P[8] Rotaviruses Possessing a DS-1-Like Backbone after Rotavirus Vaccine Introduction in Malawi. J Virol. 2018;92(3): pii: e01246-17. https://doi.org/10.1128/ JVI.01246-17
Bucardo F, Rippinger CM, Svensson L, Patton JT. Vaccine-derived NSP2 segment in rotaviruses from vaccinated children with gastroenteritis in Nicaragua. Infect Genet Evol. 2012;12(6):1282-94. https://doi. org/10.1016/j.meegid.2012.03.007
Payne DC, Edwards KM, Bowen MD, Keckley E, Peters J, Esona MD, et al. Sibling transmission of vaccine-derived rotavirus (RotaTeq) associated with rotavirus gastroenteritis. Pediatrics. 2010;125(2):e438-41. https://doi. org/10.1542/peds.2009-1901
Donato CM, Ch’ng LS, Boniface KF, Crawford NW, Buttery JP, Lyon M, et al. Identification of strains of RotaTeq rotavirus vaccine in infants with gastroenteritis following routine vaccination. J Infect Dis. 2012;206(3):377- 83. https://doi.org/10.1093/infdis/jis361
Hemming M, Vesikari T. Vaccine-derived human-bovine double reassortant rotavirus in infants with acute gastroenteritis. Pediatr Infect Dis J. 2012;31(9):992-4. https://doi.org/10.1097/INF.0b013e31825d611e
Rose TL, Marques da Silva MF, Gomez MM, Resque HR, Ichihara MY, Volotao Ede M, et al. Evidence of vaccine-related reassortment of rotavirus, Brazil, 2008-2010. Emerg Infect Dis. 2013;19(11):1843-6. https://doi. org/10.3201/eid1911.121407
McDonald SM, Matthijnssens J, McAllen JK, Hine E, Overton L, Wang S, et al. Evolutionary dynamics of human rotaviruses: balancing reassortment with preferred genome constellations. PLoS Pathog. 2009;5(10):e1000634. https://doi.org/10.1371/journal.ppat.1000634
Zeller M, Nuyts V, Heylen E, De Coster S, Conceicao-Neto N, Van Ranst M, et al. Emergence of human G2P[4] rotaviruses containing animal derived gene segments in the post-vaccine era. Sci Rep. 2016;6:36841. https://doi.org/10.1038/srep36841
Doan YH, Nakagomi T, Aboudy Y, Silberstein I, Behar-Novat E, Nakagomi O, et al. Identification by full-genome analysis of a bovine rotavirus transmitted directly to and causing diarrhea in a human child. J Clin Microbiol. 2013;51(1):182-9. https://doi.org/10.1128/JCM.02062-12
Cowley D, Donato CM, Roczo-Farkas S, Kirkwood CD. Novel G10P[14] rotavirus strain, northern territory, Australia. Emerg Infect Dis. 2013;19(8):1324-7. https://doi.org/10.3201/eid.1908.121653
Komoto S, Tacharoenmuang R, Guntapong R, Ide T, Sinchai P, Upachai S, et al. Identification and characterization of a human G9P[23] rotavirus strain from a child with diarrhoea in Thailand: evidence for porcine-tohuman interspecies transmission. J Gen Virol. 2017;98(4):532-8. https://doi. org/10.1099/jgv.0.000722
Martinez M, Galeano ME, Akopov A, Palacios R, Russomando G, Kirkness EF, et al. Whole-genome analyses reveals the animal origin of a rotavirus G4P[6] detected in a child with severe diarrhea. Infect Genet Evol. 2014;27:156-62. https://doi.org/10.1099/jgv.0.000722
Iturriza-Gomara M, Cubitt D, Steele D, Green J, Brown D, Kang G, et al. Characterisation of rotavirus G9 strains isolated in the UK between 1995 and 1998. J Med Virol. 2000;61(4):510-7. https://doi.org/10.1002/1096- 9071(200008)61:4<510::AID-JMV15>3.0.CO;2-Q
Kanai Y, Komoto S, Kawagishi T, Nouda R, Nagasawa N, Onishi M, et al. Entirely plasmid-based reverse genetics system for rotaviruses. Proc Natl Acad Sci U S A. 2017;114(9):2349-54. https://doi.org/10.1073/ pnas.1618424114