2019, Número 4
<< Anterior Siguiente >>
Neumol Cir Torax 2019; 78 (4)
Panorama epigenético del mesotelioma pleural maligno
Álvarez-Morán AM, Ávila-Sánchez P
Idioma: Español
Referencias bibliográficas: 107
Paginas: 395-403
Archivo PDF: 264.48 Kb.
RESUMEN
El mesotelioma pleural maligno es un tumor con una incidencia
relativamente baja, en donde gran parte de su carcinogénesis involucra
factores epigenéticos que mantienen su heterogeneidad; y en ocasiones,
son un blanco terapéutico, o bien un obstáculo a la efectividad en los
tratamientos actuales. Esta revisión resume los principales mecanismos
de desregulación epigenética involucrados en la patogenia del mesotelioma
pleural maligno, tales como la hipermetilación mediada por ADNmetiltransferasas
de distintos genes supresores de tumores, así como su
relación con la exposición a fibras de asbesto que es el principal factor de
riesgo. Su génesis se relaciona a inflamación crónica por radicales libres
que culmina en alteraciones cromosómicas, inestabilidad genómica y
expresión de genes que promueven la invasión tumoral y angiogénesis.
Existen otras vías independientes de metilación que producen silenciamiento
génico como el complejo Polycomb y la mutación de la vía SWI/
SNF. Por último, se mencionan otros mecanismos epigenéticos como la
hipometilación con pérdida de impronta y activación de genes CG que
inducen respuestas inmunológicas, así como la acetilación, desacetilación
y desmetilación en el contexto de la cromatina e histonas. Todo lo
previo con el objetivo de saber el uso clínico en cuanto al diagnóstico y
tratamiento actual epigenético.
REFERENCIAS (EN ESTE ARTÍCULO)
Kim MC, Kim NY, Seo YR, Kim Y. An integrated analysis of the genome-wide profiles of DNA methylation and mRNA expression defining the side population of a human malignant mesothelioma cell line. J Cancer 2016;7(12):1668-1679. doi: 10.7150/jca.15423.
Sage AP, Martinez VD, Minatel BC, et al. Genomics and epigenetics of malignant mesothelioma. High Throughput 2018;7(3). pii: E20. doi: 10.3390/ht7030020.
Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet 2006;7(1):21-33. doi: 10.1038/nrg1748.
Magee JA, Piskounova E, Morrison SJ. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 2012;21(3):283-296. doi: 10.1016/j.ccr.2012.03.003.
Pietras A. Cancer stem cells in tumor heterogeneity. Adv Cancer Res 2011; 112:255-281. doi: 10.1016/B978-0-12-387688-1.00009-0.
Laird PW. Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 2010;11(3):191-203. doi:10.1038/nrg2732.
Jacinto FV, Ballestar E, Esteller M. Methyl-DNA immunoprecipitation (MeDIP): hunting down the DNA methylome. Biotechniques 2008;44(1):35. doi: 10.2144/000112708.
Blayney JK, Ceresoli GL, Castagneto B, et al. Response to chemotherapy is predictive in relation to longer overall survival in an individual patient combined-analysis with pleural mesothelioma. Eur J Cancer 2012;48(16):2983-2992. doi: 10.1016/j.ejca.2012.05.018.
Vandermeers F, Neelature Sriramareddy S, Costa C, Hubaux R, Cosse JP, Willems L. The role of epigenetics in malignant pleural mesothelioma. Lung Cancer 2013;81(3):311-318. doi: 10.1016/j. lungcan.2013.05.014.
Shukla A, Shukla A. Current Therapies for Malignant Mesothelioma. J Cancer Sci Ther 2014;6: 306-309.
Lee AY, He B, You L, et al. Expression of the secreted frizzled-related protein gene family is downregulated in human mesothelioma. Oncogene 2004; 23(39):6672-6676. doi: 10.1038/sj.onc.1207881.
Kohno H, Amatya VJ, Takeshima Y, et al. Aberrant promoter methylation of WIF-1 and SFRP1, 2, 4 genes in mesothelioma. Oncol Rep 2010;24(2):423–431. doi: 10.3892/or_00000875 .
Christensen BC, Houseman EA, Godleski JJ, et al. Epigenetic profiles distinguish pleural mesothelioma from normal pleura and predict lung asbestos burden and clinical outcome. Cancer Res 2009;69(1):227–234. doi: 10.1158/0008-5472.CAN-08-2586.
Guarrera S, Viberti C, Cugliari G, et al. Peripheral Blood DNA methylation as potential biomarker of malignant pleural mesothelioma in asbestos-exposed subjects. J Thorac Oncol 2019;14(3):527-539. doi: 10.1016/j.jtho.2018.10.163.
Tomii K, Tsukuda K, Toyooka S, et al. Aberrant promoter methylation of insulin-like growth factor binding protein-3 gene in human cancers. Int J Cancer 2007;120(3):566–573. doi: 10.1002/ijc.22341.
Kimura K, Toyooka S, Tsukuda K, et al. The aberrant promoter methylation of BMP3b and BMP6 in malignant pleural mesotheliomas. Oncol Rep 2008; 20(5):1265–1268.
Toyooka S, Pass HI, Shivapurkar N, et al. Aberrant methylation and simian virus 40 tag sequences in malignant mesothelioma. Cancer Res 2001;61(15): 5727–5730.
Shivapurkar N, Toyooka S, Toyooka KO, et al. Aberrant methylation of trail decoy receptor genes is frequent in multiple tumor types. Int J Cancer 2004; 109(5):786–792. doi: 10.1002/ijc.20041.
Tsou JA, Galler JS, Wali A, et al. DNA methylation profile of 28 potential marker loci in malignant mesothelioma. Lung Cancer 2007;58(2):220–230. doi: 10.1016/j.lungcan.2007.06.015.
Yin Y, Morgunova E, Jolma A, et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 2017;356(6337). pii: eaaj2239. doi: 10.1126/science.aaj2239.
Tsou JA, Shen LY, Siegmund KD, et al. Distinct DNA methylation profiles in malignant mesothelioma, lung adenocarcinoma, and non-tumor lung. Lung Cancer 2005;47(2):193–204. doi: 10.1016/j. lungcan.2004.08.003.
Suzuki M, Toyooka S, Shivapurkar N, et al. Aberrant methylation profile of human malignant mesotheliomas and its relationship to SV40 infection. O ncogene 2 005;24(7):1302–1308. d oi: 1 0.1038/ sj.onc.1208263.
Paik PK, Krug LM. Histone deacetylase inhibitors in malignant pleural mesothelioma: preclinical rationale and clinical trials. J Thorac Oncol 2010; 5(2):275–279. doi: 10.1097/JTO.0b013e3181c5e366.
Sekido T. Molecular pathogenesis of malignant mesothelioma. Carcinogenesis 2013;34(7):1413–1419. doi: 10.1093/carcin/bgt166.
Heintz NH, Janssen-Heininger YM, Mossman BT. Asbestos, lung cancers, and mesotheliomas: from molecular approaches to targeting tumor survival pathways. Am J Respir Cell Mol Biol 2010;42(2):133– 139. doi: 10.1165/rcmb.2009-0206TR.
Toyokuni S. Mechanisms of asbestos-induced carcinogenesis. Nagoya J Med Sci 2009;71(1-2):1–10.
Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell 2012;150(1):12-27. doi: 10.1016/j.cell.2012.06.013.
Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol 2014;15(11):703-708. doi: 10.1038/nrm3890.
Jin B, Robertson KD. DNA methyltransferases, DNA damage repair, and cancer. Adv Exp Med Biol 2013;754:3-29. doi: 10.1007/978-1- 4419-9967-2_1.
Baylin SB, Jones PA. Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol 2016;8(9). pii: a019505. doi: 10.1101/cshperspect. a019505.
Casalone E, Allione A, Viberti C, et al. DNA methylation profiling of asbestos-treated MeT5A cell line reveals novel pathways implicated in asbestos responses. Arch Toxicol 2018;92(5):1785-1795. doi: 10.1007/ s00204-018-2179-y.
Christensen BC, Marsit CJ, Houseman EA, et al. Differentiation of lung adenocarcinoma, pleural mesothelioma, and nonmalignant pulmonary tissues using DNA methylation profiles. Cancer Res 2009;69(15):6315–6321. doi: 10.1158/0008-5472.CAN-09-1073.
Zhu H, Wang G, Qian J. Transcription factors as readers and effectors of DNA methylation. Nat Rev Genet 2016;17(9):551-565. doi: 10.1038/ nrg.2016.83.
Shimbo T, Wade PA. Proteins that read DNA methylation. Adv Exp Med Biol 2016;945:303-320. doi: 10.1007/978-3-319-43624-1_13.
Yoon JH, Smith LE, Feng Z, et al. Methylated CpG dinucleotides are the preferential targets for G-to-T transversion mutations induced by benzo[a]pyrene diol epoxide in mammalian cells: similarities with the p53 mutation spectrum in smoking-associated lung cancers. Cancer Res 2001;61(19):7110-7117.
Bochtler M, Kolano A, Xu GL. DNA demethylation pathways: Additional players and regulators. Bioessays 2017;39:1-13. doi: 10.1002/ bies.201600178.
Yin X, Xu Y. Structure and function of TET enzymes. Adv Exp Med Biol 2016;945:275-302. doi: 10.1007/978-3-319-43624-1_12.
Ha K, Lee GE, Palii SS, et al. Rapid and transient recruitment of DNMT1 to DNA double-strand breaks is mediated by its interaction with multiple components of the DNA damage response machinery. Hum Mol Genet 2011;20(1):126-140. doi: 10.1093/hmg/ddq451.
Cai Y, Tsai HC, Yen RC, et al. Critical threshold levels of DNA methyltransferase 1 are required to maintain DNA methylation across the genome in human cancer cells. Genome Res 2017;27(4):533-544. doi: 10.1101/gr.208108.116.
An J, Rao A, Ko M. TET family dioxygenases and DNA demethylation in stem cells and cancers. Exp Mol Med 2017;49(4):e323. doi: 10.1038/ emm.2017.5.
Zoghbi HY, Beaudet AL. Epigenetics and human disease. Cold Spring Harb Perspect Biol 2016;8(2):a019497. doi: 10.1101/cshperspect. a019497.
Schomacher L, Niehrs C. DNA repair and erasure of 5-methylcytosine in vertebrates. Bioessays 2017;39(3). doi: 10.1002/bies.201600218.
Schuermann D, Weber AR, Schär P. Active DNA demethylation by DNA repair: Facts and uncertainties. DNA Repair (Amst) 2016;44:92- 102. doi: 10.1016/j.dnarep.2016.05.013.
Van Tongelen A, Loriot A, De Smet C. Oncogenic roles of DNA hypomethylation through the activation of cancer-germline genes. Cancer Lett 2017;396:130-137. doi: 10.1016/j.canlet.2017.03.029.
Audia JE, Campbell RM. Histone modifications and cancer Cold Spring Harb Perspect Biol 2016;8(4):a019521. doi: 10.1101/ cshperspect.a019521.
Zhao Y, Garcia BA. Comprehensive catalog of currently documented histone modifications. Cold Spring Harb Perspect Biol 2015;7(9):a025064. doi: 10.1101/cshperspect.a025064.
Wapenaar H, Dekker FJ. Histone acetyltransferases: challenges in targeting bi-substrate enzymes. Clin Epigenetics 2016;8:59.
Hyun K, Jeon J, Park K, Kim J. Writing, erasing and reading histone lysine methylations. Exp Mol Med 2017;49(4):e324. doi: 10.1038/ emm.2017.11.
Yi X, Jiang XJ, Li XY, Jiang DS. Histone methyltransferases: novel targets for tumor and developmental defects. Am J Transl Res 2015;7(11):2159-2175.
Bueno R, Stawiski EW, Goldstein LD, et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet 2016;48(4):407-416. doi: 10.1038/ng.3520.
Liu F, Killian JK, Yang M, et al. Epigenomic alterations and gene expression profiles in respiratory epithelia exposed to cigarette smoke condensate. Oncogene 2010;29(25):3650-3664. doi: 10.1038/ onc.2010.129.
Kumar R, Li DQ, Muller S, Knapp S. Epigenomic regulation of oncogenesis by chromatin remodeling. Oncogene 2016;35(34):4423- 4436. doi: 10.1038/onc.2015.513.
Längst G, Manelyte L. Chromatin remodelers: From function to dysfunction. Genes (Basel) 2015;6(2):299-324. doi: 10.3390/ genes6020299.
Witkowski L, Foulkes WD. In Brief: Picturing the complex world of chromatin remodelling families. J Pathol 2015;237(4):403-406. doi: 10.1002/path.4585.
Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012;81:145-166. doi: 10.1146/annurevbiochem- 051410-092902.
Rinn JL. lncRNAs: linking RNA to chromatin. Cold Spring Harb Perspect Biol 2014;6(8).pii: a018614. doi: 10.1101/cshperspect. a018614.
Meseure D, Drak Alsibai K, Nicolas A, Bieche I, Morillon A. Long noncoding RNAs as new architects in cancer epigenetics, prognostic biomarkers, and potential therapeutic targets. Biomed Res Int 2015;2015:320214. doi: 10.1155/2015/320214.
Davidovich C, Cech TR. The recruitment of chromatin modifiers by long noncoding RNAs: lessons from PRC2. RNA 2015;21(12):2007- 2022. doi: 10.1261/rna.053918.115.
Bagwe AN, Kay PH, Spagnolo DV. Evidence that DNA methylation imbalance is not involved in the development of malignant mesothelioma. Anticancer Res 1997;17(5A):3341-3343.
Goto Y, Shinjo K, Kondo Y, et al. Epigenetic profiles distinguish malignant pleural mesothelioma from lung adenocarcinoma. Cancer Res 2009;69(23):9073–9082. doi: 10.1158/0008-5472.CAN-09-1595.
Foran E, Garrity-Park MM, Mureau C, et al. Upregulation of DNA methyltransferase-mediated gene silencing, anchorage-independent growth, and migration of colon cancer cells by interleukin-6. Mol Cancer Res 2010;8(4):471-481. doi: 10.1158/1541-7786.MCR-09-0496.
Hodge DR, Xiao W, Clausen PA, Heidecker G, Szyf M, Farrar WL. Interleukin-6 regulation of the human DNA methyltransferase (HDNMT) gene in human erythroleukemia cells. J Biol Chem 2001;276(43):39508-39511. doi: 10.1074/jbc.C100343200.
Yu M, Lou J, Xia H, et al. Global DNA hypomethylation has no impact on lung function or serum inflammatory and fibrosis cytokines in asbestos-exposed population. Int Arch Occup Environ Health 2017;90(3):265-274. doi: 10.1007/s00420-017-1195-1.
Gaudet F, Hodgson JG, Eden A, et al. Induction of tumors in mice by genomic hypomethylation. Science 2003;300(5618):489-492. doi: 10.1126/science.1083558 .
Salmaninejad A, Zamani MR, Pourvahedi M, Golchehre Z, Hosseini Bereshneh A, Rezaei N. Cancer/Testis antigens: expression, regulation, tumor invasion, and use in immunotherapy of cancers. Immunol Invest 2016;45(7):619-640. doi: 10.1080/08820139.2016.1197241.
De Smet C, Loriot A. DNA hypomethylation and activation of germlinespecific genes in cancer. Adv Exp Med Biol 2013;754:149-166. doi: 10.1007/978-1-4419-9967-2_7.
Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ. Cancer/ testis antigens, gametogenesis and cancer. Nat Rev Cancer 2005;5(8):615-625. doi: 10.1038/nrc1669.
Zendman AJ, Ruiter DJ, Van Muijen GN. Cancer/testis-associated genes: identification, expression profile, and putative function. J Cell Physiol 2003; 194(3):272-288. doi: 10.1002/jcp.10215.
Renaud S, Loukinov D, Alberti L, et al. BORIS/CTCFL-mediated transcriptional regulation of the hTERT telomerase gene in testicular and ovarian tumor cells. Nucleic Acids Res 2011;39(3):862-873. doi: 10.1093/nar/gkq827.
Dougherty CJ, Ichim TE, Liu L, et al. Selective apoptosis of breast cancer cells by siRNA targeting of BORIS. Biochem Biophys Res Commun 2008;370(1):109-112. doi: 10.1016/j.bbrc.2008.03.040.
Loriot A, Reister S, Parvizi GK, Lysy PA, Smet C. DNA methylationassociated repression of cancer-germline genes in human embryonic and adult stem cells. Stem Cells 2009;27(4):822-824. doi: 10.1002/ stem.8.
Schrump DS. Targeting epigenetic mediators of gene expression in thoracic malignancies. Biochim Biophys Acta 2012;1819(7):836-845. doi: 10.1016/j.bbagrm.2012.03.009.
Weiser TS, Guo ZS, Ohnmacht GA, et al. Sequential 5-Aza-2 deoxycytidine-depsipeptide FR901228 treatment induces apoptosis preferentially in cancer cells and facilitates their recognition by cytolytic T lymphocytes specific for NY-ESO-1. J Immunother 2001;24(2):151-161. doi: 10.1097/00002371-200103000-00010.
Sigalotti L, Coral S, Altomonte M, et al. Cancer testis antigens expression in mesothelioma: role of DNA methylation and bioimmunotherapeutic implications. Br J Cancer 2002;86(6):979-982. doi: 10.1038/sj.bjc.6600174.
Oliviero G, Brien GL, Waston A, et al. Dynamic protein interactions of the polycomb repressive complex 2 during differentiation of pluripotent cells. Mol Cell Proteomics 2016;15(11):3450-3460. doi: 10.1074/mcp. M116.062240.
Pasini D, Di Croce L. Emerging roles for Polycomb proteins in cancer. Curr Opin Genet Dev 2016;36:50-58. doi: 10.1016/j.gde.2016.03.01.
Poynter ST, Kadoch C. Polycomb and trithorax opposition in development and disease. Wiley Interdiscip Rev Dev Biol 2016;5(6):659-688. doi: 10.1002/wdev.244.
Pasini D, Cloos PA, Walfridsson J, et al. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 2010;464(7286):306-310. doi: 10.1038/nature08788.
Katoh M. Functional proteomics of the epigenetic regulators ASXL1, ASXL2 and ASXL3: a convergence of proteomics and epigenetics for translational medicine. Expert Rev Proteomics 2015;12(3):317-328. doi: 10.1586/14789450.2015.1033409.
Mantsoki A, Devailly G, Joshi A. CpG island erosion, polycomb occupancy and sequence motif enrichment at bivalent promoters in mammalian embryonic stem cells. Sci Rep 2015;5:16791. doi: 10.1038/ srep16791.
Harikumar A, Meshorer E. Chromatin remodeling and bivalent histone modifications in embryonic stem cells. EMBO Rep 2015;16:1609-19.
Kemp CD, Rao M, Xi S, et al. Polycomb repressor complex-2 is a novel target for mesothelioma therapy. Clin Cancer Res 2012;18(1):77-90. doi: 10.1158/1078-0432.CCR-11-0962.
LaFave LM, Beguelin W, Koche R, et al. Loss of BAP1 function leads to EZH2-dependent transformation. Nat Med 2015;21(11):1344-1349. doi: 10.1038/nm.3947.
Zauderer MG, Bott M, McMillan R, et al. Clinical characteristics of patients with malignant pleural mesothelioma harboring somatic BAP1 mutations. J Thorac Oncol 2013;8(11):1430-1433. doi: 10.1097/ JTO.0b013e31829e7ef9.
Kadoch C, Copeland RA, Keilhack H. PRC2 and SWI/SNF chromatin remodeling complexes in health and disease. Biochemistry 2016;55(11):1600-1614. doi: 10.1021/acs.biochem.5b01191.
Pulice JL, Kadoch C. Composition and function of mammalian SWI/SNF chromatin remodeling complexes in human disease. Cold Spring Harb Symp Quant Biol 2016;81:53-60. doi: 10.1101/ sqb.2016.81.031021.
Yoshikawa Y, Sato A, Tsujimura T, et al. Biallelic germline and somatic mutations in malignant mesothelioma: multiple mutations in transcription regulators including mSWI/SNF genes. Int J Cancer 2015;136(3):560-571. doi: 10.1002/ijc.29015.
Yoshikawa Y, Emi M, Hashimoto-Tamaoki T, et al. High-density array-CGH with targeted NGS unmask multiple noncontiguous minute deletions on chromosome 3p21 in mesothelioma. Proc Natl Acad Sci USA 2016; 113(47):13432-13437. doi: 10.1073/ pnas.1612074113.
Filipp FV. Crosstalk between epigenetics and metabolism-Yin and Yang of histone demethylases and methyltransferases in cancer. Brief Funct Genomics 2017;16(6):320-325. doi: 10.1093/bfgp/elx001.
Wolff F, Leisch M, Greil R, Risch A, Pleyer L. The double-edged sword of (re)expression of genes by hypomethylating agents: from viral mimicry to exploitation as priming agents for targeted immune checkpoint modulation. Cell Commun Signal 2017;15(1):13. doi: 10.1186/s12964-017-0168-z.
Kim K, Skora AD, Li Z, et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloidderived cells. Proc Natl Acad Sci USA 2014;111(32):11774-11779. doi: 10.1073/pnas.1410626111.
Pathania R, Ramachandran S, Elangovan S, et al. DNMT1 365 is essential for mammary and cancer stem cell maintenance and tumorigenesis. Nat Commun 2015;6:6910. doi: 10.1038/ncomms7910.
Yang J, Corsello TR, Ma Y. Stem cell gene SALL4 suppresses transcription through recruitment of DNA methyltransferases. J Biol Chem 2012;287(3): 1996-2005. doi: 10.1074/jbc.M111.308734.
Yogelzang NJ, Herndon JE 2nd, Cirrincione C, et al. Dihydro-5- azacytidine in malignant mesothelioma. A phase II trial demonstrating activity accompanied by cardiac toxicity. Cancer and Leukemia Group B. Cancer 1997;79(11):2237-2242. doi: 10.1002/(sici)1097- 0142(19970601)79:11<2237::aid-cncr23>3.0.co;2-w.
Schrump DS, Fischette MR, Nguyen DM, et al. Phase I study of decitabine-mediated gene expression in patients with cancers involving the lungs, esophagus, or pleura. Clin Cancer Res 2006;12(19):5777-5785. doi: 10.1158/1078-0432.CCR-06-0669.
Chabner BA, Johns DG, Coleman CN, Drake JC, Evans WH. Purification and properties of cytidine deaminase from normal and leukemic granulocytes. J Clin Invest 1974;53(3):922-931. doi: 10.1172/JCI107633.
Lavelle D, Vaitkus K, Ling Y, et al. Effects of tetrahydrouridine on pharmacokinetics and pharmacodynamics of oral decitabine. Blood 2012;119(5):1240-1247. doi: 10.1182/blood-2011-08-371690.
Wentworth D F, Wo l fe n d e n R . On the interact ion of 3,4,5,6-tetrahydrouridine with human liver cytidine deaminase. Biochemistry 1975;14(23):5099-5105. doi: 10.1021/bi00694a012.
Newman EM, Morgan RJ, Kummar S, et al. A phase I, pharmacokinetic, and pharmacodynamic evaluation of the DNA methyltransferase inhibitor 5-fluoro-2’-deoxycytidine, administered with tetrahydrouridine. Cancer Chemother Pharmacol 2015;75(3):537-546. doi: 10.1007/ s00280-014-2674-7.
Tan K, Kanijo K, Momose S, et al. Mesothelin (MSLN) promoter is hypomethylated in malignant mesothelioma, but its expression is not associated with methylation status of the promoter. Hum Pathol 2010; 41(9):1330-1338. doi: 10.1016/j.humpath.2010.03.002.
Krug LM, Kindler HL, Calvert H, et al. Vorinostat in patients with advanced malignant pleural mesothelioma who have progressed on previous chemotherapy (VANTAGE-014): a phase 3, double-blind, randomised, placebo-controlled trial. Lancet Oncol 2015;16(4):447- 456. doi: 10.1016/S1470-2045(15)70056-2.
Ismail IH, Davidson R, Gagné JP, Xu ZZ, Poirier GG, Hendzel MJ. Germline mutations in bap1 impair its function in DNA double-strand break repair. Cancer Res 2014;74(16):4282-4294. doi: 10.1158/0008- 5472.CAN-13-3109.
Fukuda T, Tsuruga T, Kuroda T, Nishikawa H, Ohta T. Functional link between BRCA1 and BAP1 through histone H2A, heterochromatin and DNA damage response. Curr Cancer Drug Targets 2016;16(2):101- 109. doi: 10.2174/1568009615666151030102427.
Yu H, Pak H, Hammond-Martel I, et al. Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair. Proc Natl Acad Sci U S A 2014;111(1):285-290. doi: 10.1073/ pnas.1309085110.
Parrotta R, Okonska A, Ronner M, et al. A Novel BRCA1-Associated protein-1 isoform affects response of mesothelioma cells to drugs impairing BRCA1-mediated DNA repair. J Thorac Oncol 2017;12(8):1309-1319. doi: 10.1016/j.jtho.2017.03.023.
Borchert S, Wessolly M, Schmeller J, et al. Gene expression profiling of homologous recombination repair pathway indicates susceptibility for olaparib treatment in malignant pleural mesothelioma in vitro. BMC Cancer 2019;19(1):108. doi: 10.1186/s12885-019-5314-0.
Thapa B, Salcedo A, Lin X, et al. The immune microenvironment, genome-wide copy number aberrations, and survival in mesothelioma. J Thorac Oncol 2017;12(5):850-859. doi: 10.1016/j.jtho.2017.02.013.