2019, Número 6
<< Anterior Siguiente >>
Med Int Mex 2019; 35 (6)
Lactato ¿marcador de hipoperfusión?
Duarte-Mote J, Lee-Eng CV, Romero-Figueroa S, Aguilar-Hidalgo JA, Gómez-Hernández GL, Sánchez-Rojas G
Idioma: Español
Referencias bibliográficas: 56
Paginas: 934-943
Archivo PDF: 344.78 Kb.
RESUMEN
El lactato es un producto intermediario en el metabolismo de los carbohidratos y
del metabolismo no esencial de los aminoácidos. La complejidad de interacciones
metabólicas e intercelulares hace posible considerar al lactato un producto
de reserva metabólica más que un producto de desecho. Durante décadas las
concentraciones elevadas de lactato sanguíneo se han considerado factor de mal
pronóstico. Actualmente el tratamiento dirigido a disminuir el lactato parece muy
prometedor. La disminución de las concentraciones de lactato como meta terapéutica
ha demostrado reducir los índices de mortalidad en pacientes con choque
séptico. Sin embargo, este comportamiento no es constante en los diferentes
estudios que se han realizado a este respecto. Reflexiones recientes surgidas a
partir de estudios realizados al final del siglo anterior y a principios de éste ponen
en duda la asociación de lactato con hipoperfusión tisular. Incluso hay trabajos
que evidencian mayor supervivencia en los pacientes en los que se incrementó
la concentración de lactato. Existe evidencia bioquímica que justifica la idea del
lactato como fuente energética en estado de estrés y su posible función como
marcador de reserva endocrinológica. Por último, es posible que la cinética de la
producción de lactato pueda interpretarse de dos maneras distintas. La primera,
como marcador de reserva endocrina y que se lleva a cabo en las primeras horas
de iniciado el estado de choque séptico y la segunda fase posterior a la anterior y
que puede explicarse de forma indirecta por hipoperfusión tisular.
REFERENCIAS (EN ESTE ARTÍCULO)
Levy B. Lactate and shock state: the metabolic view. Curr Opin Crit Care 2006;12:315-21. DOI: 10.1097/01. ccx.0000235208.77450.15.
Nichol AD, Egi M, Pettila V, Bellomo R, French C, Hart G, et al. Relative hyperlactatemia and hospital mortality in critically ill patients: a retrospective multi-centre study. Crit Care 2010;14:R25. doi: 10.1186/cc8888.
Nichol A, Bailey M, Egi M, Pettila V, French C, Stachowski E, et al. Dynamic lactate indices as predictors of outcome in critically ill patients. Crit Care 2011;15:R242. doi: 10.1186/ cc10497.
Haas SA, Lange T, Saugel B, Petzoldt M, Fuhrmann V, Metschke M, et al. Severe hyperlactatemia, lactate clearance and mortality in unselected critically ill patients. Intensive Care Med 2016;42:202-10. doi: 10.1007/s00134-015-4127-0.
Vincent JL, Dufaye P, Berre J, Leeman M, Degaute JP, Kahn RJ. Serial lactate determinations during circulatory shock. Crit Care Med 1983;11:449-51. DOI: 10.1097/00003246- 198306000-00012.
Vincent JL, et al. The value of blood lactate kinetics in critically ill patients: a systematic review. Critical Care 2016;20:257. doi: 10.1186/s13054-016-1403-5.
Suistomaa M, Ruokonen E, Kari A, Takala J. Time-pattern of lactate and to pyruvate ratio in the first 24 hrs of intensive care emergency admissions. Shock 2000;14:8-12. DOI: 10.1097/00024382-200014010-00002.
Wang H, Wu DW, Chen XM, Li C, Ding SF, Zhai Q, et al. Relationship between blood lactic level, lactic clearance, duration of lacticemia and prognosis of critically ill patients in intensive care unit. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2009;21:357-60.
Krishna U, Joshi SP, Modh M. An evaluation of serial blood lactate measurement as an early predictor of shock and its outcome in patients of trauma or sepsis. Indian J Crit Care Med 2009;13:66-73. doi: 10.4103/0972-5229.56051.
Soliman HM, Vincent JL. Prognostic value of admission serum lactate concentrations in intensive care unit patients. Acta Clin Belg 2010;65:176-81. DOI: 10.1179/ acb.2010.037.
Jones AE, Shapiro NI, Trzeciak S, Arnold RC, Claremont HA, Kline JA. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA. 2010;303:739-46. doi: 10.1001/ jama.2010.158.
Contenti J, Occelli C, Corraze H, Lemoel F, Levraut J. Long-term beta-blocker therapy decreases blood lactate concentration in severely septic patients. Crit Care Med 2015;43:2616-22. doi: 10.1097/CCM.0000000000001308.
Jansen TC, van Bommel J, Schoonderbeek FJ, Sleeswijk Visser SJ, van der Klooster JM, Lima AP, Willemsen SP, Bakker J. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med 2010;182:752-761. doi: 10.1164/rccm.200912-1918OC.
Garcia-Alvarez M, et al. Sepsis-associated hyperlactatemia. Critical Care 2014;18:503. doi: 10.1186/s13054-014- 0503-3.
Connor H, Woods HF. Quantitative aspects of L(+)- lactate metabolism in human beings. Ciba Found Symp 1982;87:214-234. DOI: 10.1002/9780470720691.ch12.
Van Hall G. Lactate kinetics in human tissues at rest and during exercise. Acta Physiol 2010;199:499-508. doi: 10.1111/j.1748-1716.2010.02122.x.
Levraut J, Ciebiera JP, Jambou P, Ichai C, Labib Y, Grimaud D. Effect of continuous venovenous hemofiltration with dialysis on lactate clearance in critically ill patients. Crit Care Med 1997;25:58-62. DOI: 10.1097/00003246- 199701000-00013.
Miller BF, Fattor JA, Jacobs KA, Horning MA, Navazio F, Lindinger MI, Brooks GA. Lactate and glucose interactions during rest and exercise in men: effect of exogenous lactate infusion. J Physiol 2002;544:963-975. DOI: 10.1113/ jphysiol.2002.027128.
Ferguson BS, Rogatzki MJ, Goodwin ML, Kane DA, Rightmire Z, Gladden LB. Lactate metabolism: historical context, prior misinterpretations, and current understanding. Eur J Appl Physiol. Published online 10 January, 2018. doi: 10.1007/ s00421-017-3795-6.
Hashimoto T, Hussien R, Brooks GA. Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. Am J Physiol Endocrinol Metab 2006;290:E1237- E1244. DOI: 10.1152/ajpendo.00594.2005.
Brooks GA. Cell-cell and intracellular lactate shuttles. J Physiol 2009;587:5591-5600. doi: 10.1113/jphysiol. 2009.178350.
Nalos M, Leverve XM, Huang SJ, Weisbrodt L, Parkin R, Seppelt IM, Ting I, McLean AS. Half-molar sodium lactate infusion improves cardiac performance in acute heart failure: a pilot randomized controlled clinical trial. Crit Care 2014;18:R48. doi: 10.1186/cc13793.
Revelly JP, Tappy L, Martinez A, Bollmann M, Cayeux MC, Berger MM, Chiolero RL. Lactate and glucose metabolism in severe sepsis and cardiogenic shock. Crit Care Med 2005;33:2235-2240. DOI: 10.1097/01. ccm.0000181525.99295.8f.
Barthelmes D, Jakob SM, Laitinen S, Rahikainen S, Ahonen H, Takala J. Effect of site of lactate infusion on regional lactate exchange in pigs. Br J Anaesth 2010;105:627-634. doi: 10.1093/bja/aeq214.
Magistretti PJ. Neuron-glia metabolic coupling and plasticity. J Exp Biol 2006; 209:2304-2311. DOI: 10.1242/ jeb.02208.
Boekstegers P, Weidenhofer S, Kapsner T, Werdan K. Skeletal muscle partial pressure of oxygen in patients with sepsis. Crit Care Med 1994;22:640-650. DOI: 10.1097/00003246- 199404000-00021.
Sair M, Etherington PJ, Peter Winlove C, Evans TW. Tissue oxygenation and perfusion in patients with systemic sepsis. Crit Care Med 2001;29:1343-1349. DOI: 10.1097/00003246-200107000-00008.
Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE. Relation between muscle Na + K + ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet 2005;365:871-875. DOI: 10.1016/S0140- 6736(05)71045-X.
Hotchkiss RS, Karl IE. Reevaluation of the role of cellular hypoxia and bioenergetic failure in sepsis. JAMA 1992;267:1503-1510.
Regueira T, Djafarzadeh S, Brandt S, Gorrasi J, Borotto E, Porta F, Takala J, Bracht H, Shaw S, Lepper PM, Jakob SM. Oxygen transport and mitochondrial function in porcine septic shock, cardiogenic shock, and hypoxaemia. Acta Anaesth Scand 2012;56:846-859. doi: 10.1111/j.1399- 6576.2012.02706.x.
Textoris J, Beaufils N, Quintana G, Ben Lassoued A, Zieleskiewicz L, Wiramus S, Blasco V, Lesavre N, Martin C, Gabert J, Leone M. Hypoxia-inducible factor (HIF1alpha) gene expression in human shock states. Crit Care 2012;16:R120. doi: 10.1186/cc11414.
Opdam H, Bellomo R. Oxygen consumption and lactate release by the lung after cardiopulmonary bypass and during septic shock. Crit Care Resusc 2000;2:181-187.
Gilles RJ, D'Orio V, Ciancabilla F, Carlier PG. In vivo 31P nuclear magnetic resonance spectroscopy of skeletal muscle energetics in endotoxemic rats: a prospective, randomized study. Crit Care Med 1994;22:499-505. DOI: 10.1097/00003246-199403000-00022.
Jahoor F, Shangraw RE, Miyoshi H, Wallfish H, Herndon DN, Wolfe RR. Role of insulin and glucose oxidation in mediating the protein catabolism of burns and sepsis. Am J Physiol 1989;257:E323-E331. DOI: 10.1152/ ajpendo.1989.257.3.E323.
Alamdari N, Constantin-Teodosiu D, Murton AJ, Gardiner SM, Bennett T, Layfield R, Greenhaff PL. Temporal changes in the involvement of pyruvate dehydrogenase complex in muscle lactate accumulation during lipopolysaccharide infusion in rats. J Physiol 2008;586:1767-1775. doi: 10.1113/ jphysiol.2007.149625.
Stacpoole PW, Nagaraja NV, Hutson AD. Efficacy of dichloroacetate as a lactate-lowering drug. J Clin Pharmacol 2003;43:683-691.
Ronco JJ, Fenwick JC, Tweeddale MG, Wiggs BR, Phang PT, Cooper DJ, Cunningham KF, Russell JA, Walley KR. Identification of the critical oxygen delivery for anaerobic metabolism in critically ill septic and nonseptic humans. JAMA 1993;270:1724-1730.
Ronco JJ, Fenwick JC, Wiggs BR, Phang PT, Russell JA, Tweeddale MG. Oxygen consumption is independent of increases in oxygen delivery bydobutamine in septic patients who have normal or increased plasma lactate. Am Rev Respir Dis 1993;147:25-31. DOI: 10.1164/ajrccm/147.1.25.
Mira JP, Fabre JE, Baigorri F, Coste J, Annat G, Artigas A, Nitenberg G, Dhainaut JF. Lack of oxygen supply dependency in patients with severe sepsis. A study of oxygen delivery increased by military antishocktrouser and dobutamine. Chest 1994; 106:1524-1531. DOI: 10.1378/ chest.106.5.1524.
Uehara M, Plank LD, Hill GL. Components of energy expenditure in patients with severe sepsis and major trauma: a basis for clinical care. Crit Care Med 1999; 27:1295-1302. DOI: 10.1097/00003246-199907000-00015.
Kreymann G, Grosser S, Buggisch P, Gottschall C, Matthaei S, Greten H. Oxygen consumption and resting metabolic rate in sepsis, sepsis syndrome, and septic shock. Crit Care Med 1993;21:1012-1019. DOI: 10.1097/00003246- 199307000-00015.
Subramaniam A, McPhee M, Nagappan R. Predicting energy expenditure in sepsis. Harris-Benedict and Schofield equations versus the Weir derivation. Crit Care Resusc 2012;14:202-210.
Hayes MA, Timmins AC, Yau EH, Palazzo M, Hinds CJ, Watson D. Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 1994; 330:1717-1722. DOI: 10.1056/NEJM199406163302404.
Marik PE, Sibbald WJ. Effect of stored-blood transfusion on oxygen delivery in patients with sepsis. JAMA 1993;269:3024-3029.
Cortez DO, Taccone FS, Vincent JL. Short acting betablocker administration in patients with septic shock. JAMA 2014;311:735-736. doi:10.1001/jama.2014.324.
Morelli A, Ertmer C, Westphal M, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA 2013;310(16):1683-1691. doi: 10.1001/ jama.2013.278477.
Levy B. Lactate and shock state: the metabolic view. Curr Opin Crit Care 2006; 12:315-321. DOI: 10.1097/01. ccx.0000235208.77450.15.
Levy B, Mansart A, Montemont C, Gibot S, Mallie JP, Regnault V, Lecompte T, Lacolley P. Myocardial lactate deprivation is associated with decreased cardiovascular performance, decreased myocardial energetics, and early death in endotoxic shock. Intensive Care Med 2007;33:495- 502. DOI: 10.1007/s00134-006-0523-9.
Wutrich Y, Barraud D, Conrad M, Cravoisy-Popovic A, Nace L, Bollaert PE, Levy B, Gibot S. Early increase in arterial lactate concentration under epinephrine infusion is associated with a better prognosis during shock. Shock 2010;34:4-9. doi: 10.1097/SHK.0b013e3181ce2d23.
Bellomo R, Kellum JA, Pinsky MR. Transvisceral lactate fluxes during early endotoxemia. Chest 1996;110:198-204. DOI: 10.1378/chest.110.1.198.
Johnson ML, Emhoff CA, Horning MA, Brooks GA. Transpulmonary lactate shuttle. Am J Physiol Regul Integr Comp Physiol 2012;302:R143-R149. doi: 10.1152/ajpregu. 00402.2011.
De Backer D, Creteur J, Silva E, Vincent JL. The hepatosplanchnic area is not a common source of lactate in patients with severe sepsis. Crit Care Med 2001;29:256-261. DOI: 10.1097/00003246-200102000-00005.
Hernandez G, Boerma EC, Dubin A, Bruhn A, Koopmans M, Edul VK, Ruiz C, Castro R, Pozo MO, Pedreros C, Veas E, Fuentealba A, Kattan E, Rovegno M, Ince C. Severe abnormalities in microvascular perfused vessel density are associated to organ dysfunctions and mortality and can be predicted by hyperlactatemia and norepinephrine requirements in septic shock patients. J Crit Care 2013;28:538. e9-14. doi: 10.1016/j.jcrc.2012.11.022.
Jansen TC, van Bommel J, Schoonderbeek FJ, Sleeswijk Visser SJ, van der Klooster JM, Lima AP, Willemsen SP, Bakker J, for the LACTATE study group. Early lactateguided therapy in intensive care unit patients. a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med 2010;182:752-761. doi: 10.1164/ rccm.200912-1918OC.
Marik PE, Bellomo R, Demla V. Lactate clearance as a target of therapy in sepsis: a flawed paradigm. OA Critical Care 2013 Mar 01;1(1):3.
Marik PE, Bellomo R. Stress hyperglycemia: an essential survival response! Critical Care 2013;17:305. doi: 10.1186/ cc12514.