2019, Número 5
<< Anterior Siguiente >>
Gac Med Mex 2019; 155 (5)
Microbiota bacteriana intestinal en pacientes mexicanos con inmunodeficiencia común variable
Franco-Esquivias AP, García-De la Peña C, Torres-Lozano C, Vaca-Paniagua F, Díaz-Velásquez C, Ortega-Cisneros M, Quintero-Ramos A
Idioma: Español
Referencias bibliográficas: 38
Paginas: 481-486
Archivo PDF: 306.54 Kb.
RESUMEN
Introducción: La inmunodeficiencia común variable (IDCV) es la principal inmunodeficiencia primaria sintomática y cursa con
alteraciones inmunes complejas. La microbiota intestinal interactúa estrechamente con el sistema inmune y la disbiosis intestinal
está relacionada con múltiples patologías.
Objetivo: Describir por primera vez la composición de la microbiota intestinal
en pacientes mexicanos con inmunodeficiencia común variable.
Método: Se recolectaron muestras fecales de cinco pacientes
con inmunodeficiencia común variable y se llevó a cabo secuenciación masiva de la región V3-V4 del gen 16S rRNA mediante
tecnología Illumina.
Resultados: Se observó abundancia bacteriana relativa a todos los niveles taxonómicos. Firmicutes,
Actinobacteria y Verrucomicrobia fueron los filos predominantes. La clase Clostridia y el orden Clostridiales fueron los principales
en su respectivo taxón; predominó la familia Ruminococcaceae. Se reportaron 166 géneros, el más abundante fue
Faecalibacterium. Se identificaron cinco especies, pero solo Bifidobacterium longum estuvo presente en todos los pacientes.
Conclusiones: A diferencia de la microbiota intestinal de sujetos sanos en quienes predominan Firmicutes y Bacteroidetes,
en los pacientes con inmunodeficiencia común variable considerados en este estudio fueron abundantes Firmicutes, Actinobacterias
y Verrucomicrobia. La baja abundancia de bacteroidetes y alta de firmicutes podrían significar disbiosis intestinal.
REFERENCIAS (EN ESTE ARTÍCULO)
Bonilla FA, Barlan I, Chapel H, Costa-Carvalho BT, Cunningham-Rundles C, De la Morena MT, et al. International Consensus Document (ICON): common variable immunodeficiency disorders. J Allergy Clin Immunol Pract. 2016;4:38-59.
Salzer U, Warnatz K, Hartmut-Peter H. Common variable immunodeficiency. An update. Arthritis Res Ther. 2012;14:1-11.
Berbers R, Nierkens S, Van Laar JM Van, Bogaert D, Leavis HL. Microbial dysbiosis in common variable immune deficiencies : evidence, causes, and consequences. Trends Immunol. 2016;38:206-216.
Perreau M, Vigano S, Bellanger F, Pellaton C, Buss G, Comte D, et al. Exhaustion of bacteria-specific CD4 T cells and microbial translocation in common variable immunodeficiency disorders. J Exp Med. 2014;211:2033-2045.
Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M. Role of the normal gut microbiota. World J Gastroenterol. 2015;21:8787-8803.
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59-65.
Cénit MC, Matzaraki V, Tigchelaar EF, Zhernakova A. Rapidly expanding knowledge on the role of the gut microbiome in health and disease. Biochim Biophys Acta. 2014;1842:1981-1992.
Belkaid Y, Hand TM. Role of the microbiota in immunity and inflamation. Cell. 2014;157:121-141.
Iizumi T, Battaglia T, Ruiz V, Pérez-Pérez GI. Gut microbiome and antibiotics. Arch Med Res. 2017;48:727-734.
Arumugam M, Raes J, Pelletier E, Le Paslier D, Batto J, Yamada T, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174-180.
Shulzhenko N, Morgun A, Hsiao W, Battle M, McCoy D, Fraser-Liggett C, et al. Crosstalk between B lymphocytes, microbiota and the intestinal ephitelium governs immunity versus metabolism in the gut. Nat Med. 2014;17:1585-1593.
Jørgensen SF, Trøseid M, Kummen M, Anmarkrud JA, Michelsen AE, Osnes LT, et al. Altered gut microbiota profile in common variable immunodeficiency associates with levels of lipopolysaccharide and markers of systemic immune activation. Mucosal Immunol. 2016;9:1455-1465.
Klindworth A, Pruesse E, Schweer T, Horn M, Schweer T. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1.
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335-336.
Stamatakis A, Zhang J, Kobert K, Flouri T. Genome analysis PEAR : a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30:614-620.
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460-2461.
Yoon S, Ha S, Kwon S, Lim J, Kim Y, Seo H, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole- genome assemblies. Int J Sysy Evol Microbiol. 2017;1613-1617.
Mcdonald D, Clemente JC, Kuczynski J, Rideout JR, Stombaugh J, Wendel D, et al. The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome. Gigascience. 2012;1(1): 7.
Navas-Molina J, Peralta-Sánchez J, González A, McMurdie PJ, Vázquez- Baeza Y, Xu ZZ, et al. Advancing our understanding of the human microbiome using QIIME. Methods Enzymol. 2015;531:371-444.
Hammer Ø, Harper DAT, Ryan PD. PAST: Paleontological Statistics Software Package For Education and Data Analysis. Palaentologia Electron. 2001;4:1-9.
Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome; 2017;5:27.
Ottman N, Smidt H, De Vos WM De, Belzer C. The function of our microbiota : who is out there and what do they do? Front Cell Infect Microbiol. 2012;2:1-11.
Ghazalpour A, Cespedes I, Bennett BJ, Allayee H. Expanding role of gut microbiota in lipid metabolism. Curr Opin Lipidol. 2016;27:141-147.
Lopetuso LR, Scaldaferri F, Petito V, Gasbarrini A. Commensal clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog. 2013;5:1.
Engels C, Ruscheweyh HJ, Beerenwinkel N, Lacroix C, Schwab C. The common gut microbe Eubacterium hallii also contributes to intestinal propionate formation. Front Microbiol. 2016;7:1-12.
Shukla SD, Budden KF, Neal R, Hansbro PM. Microbiome effects on immunity, health and disease in the lung. Clin Transl Immunology. 2017;6:e133.
Kawamoto S, Maruya M, Kato LM, Suda W, Atarashi K, Doi Y, et al. Foxp3 + T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity. 2014;41:1-14.
Ray A, Dittel BN. Interrelatedness between dysbiosis in the gut microbiota due to immunodeficiency and disease penetrance of colitis. Immunology. 2015;146:359-368.
Wu H, Wu E. Health technology slide shows. Web feature gets down to basics. Health Devices. 2003;32:126-127.
Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, et al. Genomics of actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev. 2007;71:495-548.
Salem I, Ramser A, Isham N, Ghannoum MA. The gut microbiome as a major regulator of the gut-skin axis. Front Microbiol. 2018;9:1-14.
Achermann Y, Goldstein EJC, Coenye T, Shirtliffa ME. Propionibacterium acnes: from commensal to opportunistic biofilm-associated implant pathogen. Clin Microbiol Rev. 2014;27:419-440.
Fujio-Vejar S, Vasquez Y, Morales P, Magne F, Vera-Wolf P, Ugalde JA, et al. The gut microbiota of healthy Chilean subjects reveals a high abundance of the phylum verrucomicrobia. Front Microbiol. 2017;8:1-11.
Dubourg G, Lagier JC, Armougom F, Robert C, Audoly G, Papazian L, et al. High-level colonisation of the human gut by Verrucomicrobia following broad-spectrum antibiotic treatment. Int J Antimicrob Agents. 2013;41:149-155.
Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev. 2007;20:593-621.
Tamboli CP, Neut C, Desreumaux P, Colombel JF. Dysbiosis in inflammatory bowel disease. Gut. 2004;53:1-4.
Collins SM. A role for the gut microbiota in IBS. Nat Rev Gastroenterol Hepatol. 2014;11:497-505.
Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell. 2016;167:1469-1480.