2019, Número 4
<< Anterior Siguiente >>
Rev Latin Infect Pediatr 2019; 32 (4)
Consenso de sarampión: recomendaciones basadas en evidencia para la vacunación 2019
Herrera BIF, Comas GA, Romero FR, Romero FR, Ochoa PUR, Madrigal AB, Ybarra MM, Rodríguez BE, Mascareñas SAH, Romero CR
Idioma: Español
Referencias bibliográficas: 56
Paginas: 157-167
Archivo PDF: 247.74 Kb.
RESUMEN
La Asociación Mexicana de Vacunología (AMV) con el compromiso de generar y difundir el conocimiento científico, presenta este consenso como la postura oficial de la AMV sobre el sarampión y su prevención específica. Abarca 16 tópicos relevantes, se realizó con el modelo de consenso académico, con el análisis y discusión de la bibliografía científica disponible, y se complementó con la opinión de expertos. La importancia de este consenso consiste en que el sarampión continúa siendo una de las principales causas de enfermedad y muerte en todo el mundo, y en la mayoría de los casos que se han presentado se pudieron haber prevenido mediante la vacunación.
REFERENCIAS (EN ESTE ARTÍCULO)
Wolfson LJ et al. Has the 2005 measles mortality reduction goal been achieved? A natural history modelling study. Lancet. 2007; 369: 191-200.
Moss WJ. Measles. Lancet. 2017; 390: 2490-24502.
Ferrario C, Califano G, Durán P, Maccarone M, Miceli I, Manterola A et al. Lineamientos para la elaboración de consensos. Arch Argent Pediatr. 2012; 110 (2): 163-167.
The AGREE Collaboration. Appraisal of Guidelines for Research & Evaluation (AGREE) Instrument. Available in: https://www.agreetrust.org/resource-centre/the-originalagree-instrument/.
Birtwhistle R, Pottie K, Shaw E, Dickinson JA, Brauer P, Fortin M et al. Canadian task force on preventive health care: ¡we’re back! Can Fam Physician. 2012; 58 (1): 13-15.
Manterola C, Asenjo-Lobos C, Otzen T. Jerarquización de la evidencia. Niveles de evidencia y grados de recomendación de uso actual. Rev Chilena Infectol. 2014; 31 (6): 705-718.
WHO. Monitoring progress towards measles elimination. Wkly Epidemiol Rec. 2010; 85: 490-495.
Dirección General de Epidemiología, Secretaría de Salud. Anuario de Morbilidad 1984-2018 [Internet]. [Consultado 3 Sept 2019]. Disponible en: http://www.epidemiologia.salud.gob.mx/anuario/html/anuarios.html.
Dirección General de Epidemiología, Secretaría de Salud. Boletion Epidemiológico Sistema Nacioanl de Vigilancia Epidemiologica Sistema Único de Información [Internet]. [Consultado 3 Sept 2019]. Disponible en: https://www.gob.mx/salud/documentos/_-boletinepidemiologico-sistema-nacional-de-vigilancia-epidemiologica-sistema-unico-de-informacion-186989.
Manual de Procedimientos Estandarizados para la Vigilancia Epidemiológica de las Enfermedades Prevenibles por Vacunación, SSA, México. Septiembre 2018.
Halsey NA. The optimal age for administering measles vaccine in developing countries. In: Halsey NA, de Quadros CA, eds. Recent advances in immunization: a bibliographic review. Washington, DC: Pan American Health Organization, 1983. pp. 4-17.
World Health Organization. Measles vaccines: WHO position paper, April 2017. Wkly Epidemiol Rec. 2017; 92: 205-227.
Simons E, Ferrari M, Fricks J et al. Assessment of the 2010 global measles mortality reduction goal: results from a model of surveillance data. Lancet. 2012; 379: 2173-2178.
WHO. Measles vaccines. Wkly Epidemiol Rec. 2009; 84: 349-360.
McLean HQ, Fiebelkorn AP, Temte JL, Wallace GS. Prevention of measles, rubella, congenital rubella syndrome, and mumps, 2013: summary recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2013; 62 (RR-4): 1-34.
Moss WJ, Scott S. The immunological basis for immunization serie. Module 7: Measles-Update 2009. Geneva: World Health Organization, 2009.
Strebel P, Orenstein W. Measles. N Engl J Med. 2019; 381: 349-357.
Strebel PM, Papania MJ, Gastanaduy PA, Goodson JL. Measles vaccine. In: Plotkin SA, Orenstein WA, Offit PA, eds. Vaccines. 7th ed. Philadelphia: Elsevier, 2018. pp. 579-618.
Amanna IJ, Carlson NE, Slifka MK. Duration of humoral immunity to common viral and vaccine antigens. N Engl J Med. 2007; 357 (19): 1903-1915.
Kremer JR, Schneider F, Muller CP. Waning antibodies in measles and rubella vaccinees--a longitudinal study. Vaccine. 2006; 24 (14): 2594-2601.
Kennedy RB, Ovsyannikova IG, Thomas A et al. Differential durability of immune responses to measles and mumps following MMR vaccination. Vaccine. 2019; 37 (13): 1775-1784.
Antia A, Ahmed H, Handel A, Carslon NE, Amanna IJ, Antia R, Slifka M. Heterogeneity and longevity of antibody memory to viruses and vaccines. PLoS Biol. 2018; 16: e2006601.
Bin D, Zhihui C, Qichang L, Ting W, Chengyin G, Xingzi W, Hanhua F, Yongzhong X. Duration of immunity following immunization with live measles vaccines: 15 years of observation in Zhejiang Provice, China. Bull Wor Helth Org. 1991; 69: 415-423.
Seagle EE, Bednarczyk RA, Hill T, Fiebelkorn AP, Hickman CJ, Icenogle JP, Belongia EA, McKLean HQ. Measles, mumps and rubella antibody patterns of persistence and rate of decline following the second dose of MMR vaccine. Vaccines. 2018; 36: 818-826.
Davidkin I, Jokinne S, Broman M, Leinikki P, Peltola H. Persistence of measles, mumps, and rubella antibodies in a MMR-vaccinated cohort: a 20-year follow-up. J Infev Dis. 2008; 197: 950-956.
Levine H, Zarka S, Ankol OE, Rozhavski V, Davidovitch N, Aboudy Y, Balicer RD. Seroprevalence of measles, mumps and rubella among Young adults, after 20 years of universal 2-dose MMR vaccination in Israel. Hum Vaccines Imunother. 2015; 11: 1400-1405.
Poethko-Müller C, Mankertz A. Seroprevalence of measles-, mumps- and rubella- specific IgG antibodies in German children and adolescents and predictors for seronegativity. PLoS ONE. 2012; 7: e42867.
Kang HJ, Han TW, Kim SJ, KIM YJ, Kin AR et al. An increasing, potentially measles-susceptible population over time after vaccination in Korea. Vaccine. 2017; 35: 4126-4132.
He H, Chen E, Li Q, Wang Z, Yan R, Fu J, Pan J. Waning immunity to measles in young adults and booster effects of revaccination in secondary school students. Vaccine. 2013; 31: 533-537.
Chen CJ, Lee PI, Hsieh YC, Chenb PY, Ho YH et al. Waning population immunity to measles in Taiwan. Vaccine. 2012; 30: 6721-6727.
Xiong Y, Wang D, Lin W, Tang H, Chen S, Ni J. Age-related changes in serological susceptibility patterns to measles. Hum Vacc Immunther. 2014; 10: 1097-1103.
Kontio M, Jokinen S, Paunio M, Peltola H, Davidkin I. Waning antibody levels and avidity: implications for MMR vaccine-induced protection. J Infect Dis. 2012; 206: 1542-1548.
Haralambieva IH, Kennedy RB, Ovsyannikova IG et al. Current perspectives in assessing humoral immunity after measles vaccination. Expert Review of Vaccines. 2019; 18 (1): 75-87.
O'Connor BP, Gleeson MW, Noelle RJ, Erickson LD. The rise and fall of long-lived humoral immunity: terminal differentiation of plasma cells in health and disease. Immunol Rev. 2003; 194: 61-76.
Haralambieva IH, Ovsyannikova IG, Pankratz VS, et al. The genetic basis for interindividual immune response variation to measles vaccine: new understanding and new vaccine approaches. Expert Rev Vaccines. 2013; 12 (1): 57-70.
Meissner HC, Strebel PM, Orenstein WA. Measles vaccines and the potential for worldwide eradication of measles. Pediatrics. 2004; 114 (4): 1065-1069.
Moss W. Measles in vaccinated individuals and the future of measles elimination. Clin Infect Dis. 2018; 67: 1320-1321.
Muller CP, Kremer JR, Best JM et al. Reducing global disease burden of measles and rubella: report of the WHO Steering Committee on research related to measles and rubella vaccines and vaccination, 2005. Vaccine. 2007; 25 (1): 1-9.
Fiebelkorn AP, Redd SB, Kuhar DT. Measles in Healthcare Facilities in the United States During the Postelimination Era, 2001-2014. Clin Infect Dis. 2015; 61 (4): 615-618.
CDC Interim Infection Prevention and Control Recommendations for Measles in Healthcare Settings Updated July 2019. Available in: https://www.cdc.gov/infectioncontrol/guidelines/measles/index.html.
CDC Measles, Mumps, and Rubella (MMR) Vaccination: What Everyone Should Know. Available in: https://www.cdc.gov/vaccines/vpd/mmr/public/index.html (Consulted 30 August of 2019).
Mossong J, Putz L, Schneider F. Seroprevalence of measles, mumps and rubella antibodies in Luxembourg: results from a national cross-sectional study. Epidemiol Infect. 2003; 132: 11-18.
Fahlgren K. Two doses of MMR vaccine--sufficient to eradicate measles, mumps and rubella? Scand J Soc Med. 1988; 16 (3): 129-135.
Chao M, Yan L, Jihai T, Haimei J et al. Assessment of mumps-containing vaccine effectiveness during an outbreak: Importance to introduce the 2-dose schedule for China. Hum Vaccin Inmunother. 2018; 14 (6): 1392-1397.
Cardemil CV, Dahl RM et al. Effectiveness of a Third Dose of MMR Vaccine for Mumps Outbreak Control. N Engl J Med. 2017; 377: 947-956.
Barrabeig I, Rovira A, Rius C et al. Effectiveness of measles vaccination for control of exposed children. Pediatr Infect Dis J. 2011; 30: 78-80.
Janeway CA. Use of concentrated human serum γ-globulin in the prevention and attenuation of measles. Bull N Y Acad Med. 1945; 21: 202-222.
Duclos P, Ward BJ. Measles vaccines: a review of adverse events. Drug Saf. 1998; 19: 435-454.
Peltola H, Heinonen OP. Frequency of true adverse reactions to measles-mumps-rubella vaccine: a double-blind placebo controlled trial in twins. Lancet. 1986; 1: 939-942.
Institute of Medicine. Measles, mumps, and rubella vaccine-adverse effects of vaccines: evidence and causality. Washington, DC: National Academies Press, 2012. pp. 103-237.
Pless RP, Bentsi-Enchill AD, Duclos P. Monitoring vaccine safety during measles mass immunization campaigns: clinical and programmatic issues. J Infect Dis. 2003; 187 (Suppl 1): S291-S298.
Retraction — Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. Lancet. 2010; 375: 445.
DeStefano F, Price CS, Weintraub ES. Increasing exposure to antibody-stimulating proteins and polysacchrides in vaccines is not associated with risk of autism. J Pediatr. 2013; 163: 561-567.
Hviid A, Hansen JV, Frisch M, Melbye M. Measles, mumps, rubella vaccination and autism: a nationwide cohort study. Ann Intern Med. 2019; 170: 513-520.
Taylor LE, Swerdfeger AL, Eslick GD. Vaccines are not associated with autism: An evidence-based meta-analysis of case-control and cohort studies. Vaccine. 2104; 32: 3623-3629.
Stratton K, Gable A, Shetty P, et al. Immunization safety review: measles-mumps- rubella vaccine and autism. Washington, DC: National Academy Press, 2001.