2019, Número S1
<< Anterior Siguiente >>
Cir Cir 2019; 87 (S1)
Tratamiento regenerativo con células madre mesenquimales provenientes de la gelatina de Wharton de cordón umbilical en la úlcera crónica por dermolipectomía
Mejía-Barradas CM, Cázares-Montañez JE, Guerra-Márquez Á, Hernández-Chávez VG, Cáceres-Cortés JR, Gutiérrez-Iglesias G
Idioma: Español
Referencias bibliográficas: 35
Paginas: 8-16
Archivo PDF: 823.94 Kb.
RESUMEN
Introducción: Los procedimientos para retirar adiposidades y piel, como la dermolipectomía, pueden desarrollar heridas
difíciles de sanar mediante tratamientos convencionales. Se ha señalado que es posible utilizar las células madre mesenquimales
en el tratamiento regenerativo en heridas, en virtud de su multipotencialidad, baja inmunogenicidad, capacidad
moduladora de inflamación y procesos modeladores de tejidos.
Caso clínico: Paciente con dehiscencia en úlcera crónica
secundaria a dermolipectomía, sometida a tratamiento cutáneo con células madre mesenquimales. Se indujo formación de
cicatriz y neovascularización, así como la disminución de leucocitos infiltrados y citocinas proinflamatorias. Se propone a las
células mesenquimales como una alternativa interesante para el tratamiento de lesiones postoperatorias.
REFERENCIAS (EN ESTE ARTÍCULO)
Gentileschi S, Servillo M, D’Ettorre M, Salgarello M. Abdominal subcutaneous mass after laser-assisted lipolysis and immediate multiple treatments with a dual-wavelength laser, vacuum and massage device. Aesthet Surg J. 2016;36:NP144-149.
Martínez-Teixido L, Serra-Mestre JM, Serra-Renom JM. A new technique for creating a neo-umbilicus in abdominoplasty. J Plast Reconstr Aesthet Surg. 2017;70:1760-1767.
García-García ML, Martín-Lorenzo JG, Campillo-Soto A, Torralba-Martínez JA, Liron-Ruiz R, Miguel-Perello J, et al. Complications and level of satisfaction after dermolipectomy and abdominoplasty post-bariatric surgery. Cir Esp. 2014;92:254-260.
Merle R, Serror K, Marco O, Chaouat M, Teissier S, Mimoun M, et al. Study of satisfaction concerning the navel after abdominal dermolipectomy with transposition: a report of 96 cases. Ann Chir Plast Esthet. 2017.
Davis FM, Kimball A, Boniakowski A, Gallagher K. Dysfunctional wound healing in diabetic foot ulcers: new crossroads. Curr Diab Rep. 2018;18:2.
Lantis JC, 2nd, Marston WA, Farber A, Kirsner RS, Zhang Y, Lee TD, et al. The influence of patient and wound variables on healing of venous leg ulcers in a randomized controlled trial of growth-arrested allogeneic keratinocytes and fibroblasts. J Vasc Surg. 2013;58:433-439.
Greer N, Foman N, Dorrian J, Fitzgerald P, MacDonald R, Rutks I, et al. Advanced wound care therapies for non-healing diabetic, venous, and arterisl ulcers: a systematic review. Washington DC: Departments of Veterans Affairs, 2012.
Giuggioli D, Manfredi A, Lumetti F, Sebastiani M, Ferri C. Cryoglobulinemic vasculitis and skin ulcers. Our therapeutic strategy and review of the literature. Semin Arthritis Rheum. 2015;44:518-526.
Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 2009;17:763-771.
Hamish M, Gohel MS, Shepherd A, Howes NJ, Davies AH. Variations in the pharmacological management of patients treated with carotid endarterectomy: a survey of European vascular surgeons. Eur J Vasc Endovasc Surg. 2009;38:402-407.
Gohel MS, Davies AH. Pharmacological agents in the treatment of venous disease: an update of the available evidence. Curr Vasc Pharmacol. 2009;7:303-308.
Tenci M, Rossi S, Bonferoni MC, Sandri G, Boselli C, Di Lorenzo A, et al. Particulate systems based on pectin/chitosan association for the delivery of manuka honey components and platelet lysate in chronic skin ulcers. Int J Pharm. 2016;509:59-70.
Pop MA, Almquist BD. Biomaterials: a potential pathway to healing chronic wounds? Exp Dermatol. 2017;26:760-763.
Badiavas EV, Falanga V. Treatment of chronic wounds with bone marrow- derived cells. Arch Dermatol. 2003;139:510-516.
Chen MY, Lie PC, Li ZL, Wei X. Endothelial differentiation of Wharton’s jelly-derived mesenchymal stem cells in comparison with bone marrow- derived mesenchymal stem cells. Exp Hematol. 2009;37 629-640.
Zhou C, Yang B, Tian Y, Jiao H, Zheng W, Wang J, et al. Immunomodulatory effect of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells on lymphocytes. Cell Immunol. 2011;272:33-38.
Bongso A, Fong CY, Gauthaman K. Taking stem cells to the clinic: major challenges. J Cell Biochem. 2008;105:1352-1360.
Gao LR, Zhang NK, Ding QA, Chen HY, Hu X, Jiang S, et al. Common expression of stemness molecular markers and early cardiac transcription factors in human Wharton’s jelly-derived mesenchymal stem cells and embryonic stem cells. Cell Transplant. 2013;22:1883-1900.
Weiss ML, Anderson C, Medicetty S, Seshareddy KB, Weiss RJ, VanderWerff I, et al. Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells. 2008;26:2865-2874.
Li X, Bai J, Ji X, Li R, Xuan Y, Wang Y. Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation. Int J Mol Med. 2014;34:695-704.
Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol. 2003;57:11-20.
Magatti M, De Munari S, Vertua E, Gibelli L, Wengler GS, Parolini O. Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells. 2008;26:182-192.
Asari S, Itakura S, Ferreri K, Liu CP, Kuroda Y, Kandeel F, et al. Mesenchymal stem cells suppress B-cell terminal differentiation. Exp Hematol. 2009;37:604-615.
Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood. 2008;111:1327-1333.
English K, Barry FP, Mahon BP. Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunol Lett. 2008;115:50-58.
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315-317.
Benítez-Arvizu G, Palma-Lara I, Vázquez-Campos R, Sesma-Villalpando RA, Parra-Barrera A, Gutiérrez-Iglesias G. Autologous mesenchymal stem cells and cutaneus autograft as a treatment for chronic ulcer secondary to diabetes mellitus 2. Cir Cir. 2015;83 532-536.
Midwood KS, Williams LV, Schwarzbauer JE. Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol. 2004; 36:1031‑1037.
Sam S, Mazzone T. Adipose tissue changes in obesity and the impact on metabolic function. Transl Res. 2014;164:284-292.
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143-147.
Stadelmann WK, Digenis AG, Tobin GR. Physiology and healing dynamics of chronic cutaneous wounds. Am J Surg. 1998;176:26S-38S.
Iba Y, Shibata A, Kato M, Masukawa T. Possible involvement of mast cells in collagen remodeling in the late phase of cutaneous wound healing in mice. Int Immunopharmacol. 2004;4:1873-1880.
Chapel A, Bertho JM, Bensidhoum M, Fouillard L, Young RG, Frick J, et al. Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. J Gene Med. 2003;5:1028-1038.
Maxson S, López EA, Yoo D, Danilkovitch-Miagkova A, Leroux MA. Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med. 2012;1:142-149.
Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB, Montgomery K, et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2004;2 E7.