2019, Número 4
<< Anterior Siguiente >>
Gac Med Mex 2019; 155 (4)
Papel de las alteraciones del sueño durante la gestación en la programación del feto para el desarrollo de obesidad y enfermedades crónicas degenerativas
Ayala-Moreno MR, Velázquez-Martínez R, Melgarejo-Gutiérrez M, González-Méndez C, Estrada-Ramírez E, Vergara-Castañeda A
Idioma: Español
Referencias bibliográficas: 40
Paginas: 423-427
Archivo PDF: 118.02 Kb.
RESUMEN
En el tercer trimestre del embarazo son frecuentes las alteraciones del sueño, las cuales generan cambios en la secreción
de melatonina en mujeres gestantes que duermen menos de ocho horas o presentan alteraciones de sueño, promoviendo
diversos cambios fisiológicos en la madre, que a su vez derivan en bajo peso al nacimiento (BPN) en el producto. El bajo
peso al nacimiento está asociado con un fenómeno conocido como “programación metabólica”, en la que el feto es sometido
a estrés que tiene como resultado alteraciones metabólicas irreversibles que lo predisponen al desarrollo de obesidad en la
edad adulta.
REFERENCIAS (EN ESTE ARTÍCULO)
Carneiro G, Zanella MT. Obesity metabolic and hormonal disorders associated with obstructive sleep apnea and their impact on the risk of cardiovascular events. Metabolism 2018;84:76-84.
Touitou YV, Reinberg A, Touitou D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: health impacts and mechanisms of circadian disruption. Life Sci. 2017;173:94-106.
Malone S, Zemel B, Compher C, Souders M, Chittams J, Thompson A, et al. Social jet lag, chronitype and body mass index in 14-17-year-old adolescents. Chronobiol Int. 2016;11:1-12.
Albrecht U, Ripperger JA. Circadian clocks and sleep: impact of rhythmic metabolism and waste clearance on the brain. Trends Neurosci. 2018;41 677-688.
Reiter RJ, Tan DX, Korkmaz A, Ma S. Obesity and metabolic syndrome: association with chronodisruption, sleep deprivation, and melatonin suppression. Ann Med. 2012;44 564-577.
Carrillo-Mora P, Ramírez-Peris J, Magaña-Vázquez K. Neurobiología del sueño y su importancia: antología para el estudiante universitario. Rev Fac Med (Mex). 2013;56:5-15.
van Der Zwan JE, De Vente W, Tolvanen M, Karlsson H, Buil JM, Koot HM, et al. Longitudinal associations between sleep and anxiety during pregnancy, and the moderating effect of resilience, using parallel process latent growth curve models. Sleep Med. 2017;40:63-68.
Nodine PM, Matthews EE. Common sleep disorders: management strategies and pregnancy outcomes. J Midwifery Womens Health. 2013; 58:368-377.
Carley DW, Farabi SS. Physiology of sleep. Diabetes Spectr. 2016;29:5-9.
Tain YL, Huang LT, Hsu CN. Developmental programming of adult disease: reprogramming by melatonin? Int J Mol Sci. 2017;18:426.
Patel AK, Araujo JF. Physiology, sleep stages. EE. UU.: StatPearls [sitio web]; 2018.
Hirshkowitz M, Whiton K, Albert SM, Alessi C, Bruni O, DonCarlos L, et al. National Sleep Foundation’s updated sleep duration recommendations: final report. Sleep Health. 2015;1:233-243.
Pfeffer M, Korf HW, Wicht H. Synchronizing effects of melatonin on diurnal and circadian rhythms. Gen Comp Endocrinol. 2018;258:215-221.
Pin Arboledas G, Morell Salort M, Mompo Marabotto L. Higiene del sueño y melatonina. En: AEPap. Curso de Actualización Pediatría. España: Exlibris; 2014.
Singh M, Jadhav HR. Melatonin: functions and ligands. Drug Discov Today. 2014;19:1410-1418.
Reiter RJ, Tan DX, Korkmaz A, Rosales-Corral SA. Melatonin and stable circadian rhythms optimize maternal, placental, and fetal physiology. Hum Reprod Update. 2014;20:293-307
Guerrero JM, Carrillo-Vico A, Lardone PJ. La melatonina. Invest Cienc. 2007;373:32-38
Reiter RJ, Rosales-Corral S, Coto-Montes A, Boga JA, Tan DX, Davis JM, et al. The photoperiod, circadian regulation and chronodisruption: the requisite interplay between the suprachiasmatic nuclei and the pineal and gut melatonin. J Physiol Pharmacol. 2011;62:269-274.
Carpentieri A, Díaz-De Barboza G, Areco V, Peralta-López M, Tolosa-De Talamoni N. New perspectives in metlatonin uses. Phamacol Res. 2012;65:437-444.
Tamanna S, Geraci SA. Major sleep disorders among women: (women’s health series). South Med J. 2013;106:470-478.
Balserak BI, Lee K. Sleep disturbances and related disorders in pregnancy. En: Balserak BI, Lee K, editores. Principles and practice of sleep medicine. EE. UU.: Saunders; 2010.
Soliman A, Lacasse A, Lanoix D, Sagrillo-Fangundes L, Boulard V, Vaillancour C. Placental melatonin system is present throughout pregnancy and regulates villous trophoblast differentiation. J Pineal Res. 2015;59:38-46.
Parra O, Sánchez-Armengol A, Capote F, Bonnin M, Arboix A, Campos-Rodríguez F, et al. Efficacy of continuous positive airway pressure treatment on 5-year survival in patients with ischaemic stroke and obstructive sleep apnea: a randomized controlled trial. J Sleep Res. 2015;24:47-53.
Pien GW, Pack AI, Jackson N, Maislin G, Macones GA, Schwab RJ. Risk factors for sleep-disordered breathing in pregnancy. Thorax. 2014; 69:371-377.
Domínguez JE, Street L, Louis J. Management of obstructive sleep apnea in pregnancy. Obstet Gynecol Clin North Am. 2018;45:233-247.
Nakamura Y, Tamura H, Kashida S, Takayama H, Yamagata Y, Karube A, et al. Changes of serum melatonin level and its relationship to feto-placental unit during pregnancy. J Pineal Res. 2001;30:29-33.
Okatani Y, Okamoto K, Hayashi K, Wakatsuki A, Tamura S, Sagara Y. Maternal-fetal transfer of melatonin in pregnant women near term. J Pineal Res. 1998;25:129-134.
Chen YC, Sheen JM, Tiao MM, Tain YL, Huang LT. Roles of melatoin in fetal programming in compromised pregnancies. Int J Mol Sci. 2013; 14:5380-5401.
Sandyk R, Anastasiadis PG, Anninos PA, Tsagas N. The pineal gland and spontaneous abortions: implications for therapy with melatonin and magnetic field. Int J Neurosci. 1992;62:243-250.
Barker DJ. The fetal and infant origins of adult disease. BMJ. 1990; 301:1111.
Lucas A. Programming by early nutrition in man. Ciba Found Symp. 1991;156:38-50.
Ayala-Moreno R, Racotta R, Anguiano B, Aceves C, Quevedo L. Perinatal undernutrition programmes thyroid function in the adult rat offspring. Br J Nutr. 2014;10:2207-2215.
Méndez N, Halabi D, Spichiger C, Salazar ER, Vergara K, Alonso-Vásquez P, et al. Gestational chronodisruption impairs circadian physiology in rat male offspring, increasing the risk of chronic disease. Endocrinology. 2016;157:4654-4668.
Zhang Y, Sun CM, Hu XQ, Zhao Y. Relationship between melatonin receptor 1B and insulin receptor substrate 1 polymorphisms with gestational diabetes mellitus: a systematic review and meta-analysis. Sci Rep. 2014;4:6113.
Reiter RJ, Tan DX, Tamura H, Cruz MH, Fuentes-Broto L. Clinical relevance of melatonin in ovarian and placental physiology: a review. Gynecol Endocrinol. 2014;30:83-89.
Seron-Ferre M, Reynolds H, Méndez NA, Mondaca M, Valenzuela F, Ebensperger R, et al. Impact of maternal melatonin suppression on amount and functionality of brown adipose aissue (BAT) in the newborn sheep. Front Endocrinol (Lausanne). 2015;5:232.
Zlotos DP, Jockers R, Cecon, E, Rivara S, Witt-Enderby PA. MT1 and MT2 melatonin receptors: ligands, models, oligomers, and therapeutic potential. J Med Chem. 2014;5:3161-3185.
Markwald RR, Melanson EL, Smith MR, Higgins J, Perreault L, Eckel RH, et al. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc Natl Acad Sci U S A. 2013;110 5695-5700.
Terrón MP, Delgado-Adámez J, Pariente JA, Barriga C, Paredes SD, Rodríguez AB. Melatonin reduces body weight gain and increases nocturnal activity in male Wistar rats. Physiol Behav. 2013;118:8-13.
Onaolapo AY, Onaolapo OJ. Circadian dysrhythmia-linked diabetes mellitus: examining melatonin´s roles in prophylaxis and management. World J Diabetes. 2018;9:99-14.