2019, Número 1
<< Anterior Siguiente >>
Rev Cubana Hematol Inmunol Hemoter 2019; 35 (1)
Calreticulina: aspectos moleculares y técnicas para su detección
Mejía OM, Acevedo TPA
Idioma: Español
Referencias bibliográficas: 35
Paginas:
Archivo PDF: 241.91 Kb.
RESUMEN
Las neoplasias mieloproliferativas crónicas (NMPC) son enfermedades clonales
caracterizadas por un aumento en el número de células maduras circulantes; estas
incluyen: policitemia vera (PV), trombocitemia esencial (TE), mielofibrosis primaria (MFP),
entre otras. Una de las principales características moleculares de estas tres entidades es la
ausencia del gen de fusión BCR/ABL. La primera mutación relacionada directamente con
estas neoplasias fue detectada en el gen JAK2; a partir de su descubrimiento, otras
mutaciones en los genes del receptor de trombopoyetina (MPL) y calreticulina (CALR) han
sido fuertemente relacionadas con la presentación de la enfermedad. La calreticulina es una
proteína del retículo endoplásmico con diversas funciones a nivel celular como la
homeostasis del calcio y la actividad de chaperona. Hasta la fecha se ha identificado un
gran número de mutaciones en el gen CALR. La mayoría de ellas son inserciones y
deleciones que generan cambios a nivel proteico con implicaciones importantes en el curso
clínico y pronóstico de las neoplasias. Debido a su alta frecuencia y fuerte asociación con
las NMPC, las mutaciones de CALR se incluyen como criterio mayor para el diagnóstico de
estas entidades. Por este motivo, se han desarrollado varias técnicas encaminadas a la
detección rápida, eficiente, sensible y especifica de esta mutación como: la secuenciación,
el análisis de fragmentos y el análisis de fusión de alta resolución. El conocimiento e
implementación de estas técnicas en los laboratorios clínicos constituye un avance
importante para el diagnóstico y la evolución de los pacientes.
REFERENCIAS (EN ESTE ARTÍCULO)
Arber DA, Orazi A, Hasserjian R, Borowitz MJ, Beau MM Le, Bloomfield CD, et al. The 2016 revision to the World Health Organization classi fi cation of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-406. [ Links ]
Titmarsh GJ, Duncombe AS, Mcmullin MF, O'Rorke M, Mesa R, De Vocht F, et al. How common are myeloproliferative neoplasms? A systematic review and meta-analysis. Am J Hematol. 2014;89(6):581-7. [ Links ]
Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. France: International Agency for Research on Cancer; 2013. [ Links ]
James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144-8. [ Links ]
Rumi E, Cazzola M. Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms. Blood. 2017 Feb 9;129(6):680-692. DOI: 10.1182/blood-2016-10-695957. [ Links ]
Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379-90. [ Links ]
Nangalia J, Massie CEE, Baxter EJJ, Nice FLL, Gundem G, Wedge DCC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391-405. [ Links ]
Michalak M, Corbett EF, Mesaeli N, Nakamura K, Opas M. Calreticulin: one protein, one gene, many functions. Biochem J. 1999;344 Pt 2:281-92. [ Links ]
Sun C, Zhang S, Li J. Calreticulin gene mutations in myeloproliferative neoplasms without Janus kinase 2 mutations. Leuk Lymphoma. 2014;56(Apr):1-6. [ Links ]
Potter DA, Tirnauer JS, Janssen R, Croall DE, Hughes CN, Fiacco KA, et al. Calpain Regulates Actin Remodeling during Cell Spreading. J Cell Biol. 1998;141(3):647-62. [ Links ]
Pietra D, Li S, Brisci A, Passamonti F, Rumi E, Theocharides A, et al. Brief report Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F) - negative myeloproliferative disorders. Blood. 2008;111(3):1686-9. [ Links ]
Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3(7):1140-51. [ Links ]
Rumi E, Pietra D, Ferretti V, Klampfl T, Harutyunyan AS, Jelena D, et al. Thrombocythemia with substantially different clinical course and outcomes JAK2 or CALR mutation status de fi nes subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood. 2014;123(10):1544-51. [ Links ]
Rotunno G, Mannarelli C, Guglielmelli P, Pacilli A, Pancrazzi A, Pieri L, et al. Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. Blood. 2014 Mar 6;123(10):1552-5. DOI: 10.1182/blood-2013-11-538983. [ Links ]
Pietra D, Rumi E, Ferretti VV, Di Buduo CA, Milanesi C, Cavalloni C, et al. Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia. 2016 Feb;30(2):431-8. DOI: 10.1038/leu.2015.277. [ Links ]
Rumi E, Pietra D, Ferretti V, Klampfl T, Harutyunyan AS, Milosevic JD, et al. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood. 2014 Mar;123(10):1544-51. [ Links ]
Alvarez-Larrán A, Ancochea A, García M, Climent F, García-Pallarols F, Angona A, et al. WHO-histological criteria for myeloproliferative neoplasms: Reproducibility, diagnostic accuracy and correlation with gene mutations and clinical outcomes. Br J Haematol. 2014;166(6):911-9. [ Links ]
Rumi E, Pietra D, Pascutto C, Guglielmelli P, Martínez-Trillos A, Casetti I, et al. Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood. 2014;124(7):1062-9. [ Links ]
Andrikovics H, Krahling T, Balassa K, Halm G, Bors A, Koszarska M, et al. Distinct clinical characteristics of myeloproliferative neoplasms with calreticulin mutations. Haematologica. 2014;99(7):1184-90. [ Links ]
Bilbao-Sieyro C, Santana G, Moreno M, Torres L, Santana-Lopez G, Rodriguez-Medina C, et al. High resolution melting analysis: A rapid and accurate method to detect CALR mutations. PLoS One. 2014;9(7):7-11. [ Links ]
Lim KH, Lin HC, Chen CGS, Wang WT, Chang YC, Chiang YH, et al. Rapid and sensitive detection of CALR exon 9 mutations using high-resolution melting analysis. Clin Chim Acta. 2015;440:133-9. [ Links ]
Chi J, Manoloukos M, Pierides C, Nicolaidou V, Nicolaou K, Kleopa M, et al. Calreticulin mutations in myeloproliferative neoplasms and new methodology for their detection and monitoring. Ann Hematol. 2014;94(3):399-408. [ Links ]
Zinke M, Nageswaran V, Reinhardt R, Burmeister T. Rapid and Sensitive Detection of Calreticulin Type 1 and 2 Mutations by Real-Time Quantitative PCR. Mol Diagn Ther. 2015 Oct;19(5):329-34. DOI: 10.1007/s40291-015-0162-3. [ Links ]
Yao QM, Zhou J, Gale RP, Li JL, Li LD, Li N, et al. A rapid, highly accurate method for quantifying CALR mutant allele burden in persons with myeloproliferative neoplasms. Hematology. 2015 Oct;20(9):517-22. DOI: 10.1179/1607845415Y.0000000009. [ Links ]
Chi J, Nicolaou KA, Nicolaidou V, Koumas L, Mitsidou A, Pierides C, et al. Calreticulin gene exon 9 frameshift mutations in patients with thrombocytosis. Leukemia. 2014;28(5):1152-4. [ Links ]
Mehrotra M, Luthra R, Singh RR, Barkoh BA, Galbincea J, Mehta P, et al. Clinical validation of a multipurpose assay for detection and genotyping of CALR mutations in myeloproliferative neoplasms. Am J Clin Pathol. 2015;144(5):746-55. [ Links ]
Murugesan G, Guenther-Johnson J, Mularo F, Cook JR, Daly TM. Validation of a molecular diagnostic assay for CALR exon 9 indels in myeloproliferative neoplasms: Identification of coexisting JAK2 and CALR mutations and a novel 9 bp deletion in CALR. Int J Lab Hematol. 2016;38(3):284-97. [ Links ]
Jeong JH, Lee HT, Seo JY, Seo YH, Kim KH, Kim MJ, et al. Screening PCR versus sanger sequencing: Detection of CALR mutations in patients with thrombocytosis. Ann Lab Med. 2016;36(4):291-9. [ Links ]
Rosso V, Petiti J, Bracco E, Pedrola R, Carnuccio F, Signorino E, et al. A novel assay to detect calreticulin mutations in myeloproliferative neoplasms. Oncotarget. 2016;8(4):6399-405. [ Links ]
Orum H. PCR clamping. Curr Issues Mol Biol. 2000;2(1):27-30. [ Links ]
Jones AV, Ward D, Lyon M, Leung W, Callaway A, Chase A, et al. Evaluation of methods to detect CALR mutations in myeloproliferative neoplasms. Leuk Res. 2015;39(1):82-7. [ Links ]
Jeromin S, Kohlmann A, Meggendorfer M, Schindela S, Perglerová K, Nadarajah N, et al. Next-generation deep-sequencing detects multiple clones of CALR mutations in patients with BCR-ABL1 negative MPN. Leukemia. 2016;30(4):973-6. [ Links ]
Park JH, Sevin M, Ramla S, Truffot A, Verrier T, Bouchot D, et al. Calreticulin mutations in myeloproliferative neoplasms: Comparison of three diagnostic methods. PLoS One. 2015;10(10):1-7. [ Links ]
Stein H, Bob R, Dürkop H, Erck C, Kämpfe D, Kvasnicka H-M, et al. A new monoclonal antibody (CAL2) detects CALRETICULIN mutations in formalin-fixed and paraffin-embedded bone marrow biopsies. Leukemia. 2016 Jan;30(1):131-5. DOI: 10.1038/leu.2015.192. [ Links ]
Nomani L, Bodo J, Zhao X, Durkin L, Loghavi S, Hsi ED. CAL2 Immunohistochemical Staining Accurately Identifies CALR Mutations in Myeloproliferative Neoplasms. Am J Clin Pathol. 2016 Oct;146(4):431-8. [ Links ]