2019, Número 2
<< Anterior Siguiente >>
Arch Neurocien 2019; 24 (2)
Hidrocefalia Idiopática de presión normal: Fisiopatología
Solís-Salgado O, Mancera-Hernández D, Guzmán-Salgado JA
Idioma: Español
Referencias bibliográficas: 36
Paginas: 34-42
Archivo PDF: 940.78 Kb.
RESUMEN
Introducción: La hidrocefalia idiopática de presión normal (HIPN) o síndrome de Hakim–
Adams, entidad clínica distintiva por trastorno en la marcha y equilibrio, incontinencia urinaria
y demencia; comparte estas características con otras entidades neurológicas que cursan con
mecanismos fisiopatológicos y eventos desencadenantes en común. Existen factores de riesgo
cardiovascular relacionados con su fisiopatología, afectando el mecanismo de Windkessel,
compliancia venosa cerebral, hidrodinamia del líquido cefalorraquídeo (LCR), trastornos en el
flujo sanguíneo subependimario de la sustancia blanca profunda (efecto Bateman-Bradley),
originando la sintomatología de la HIPN.
Métodos: Con el objetivo de conocer la fisiopatología de la HIPN, se emplearon 5 términos a
través de la base de datos PubMed, para obtener información acorde al tema.
Resultados: Se encontraron un total de 233 artículos. Se dividieron de acuerdo al tipo de propósito
didáctico a corte al tema. I. hidrocefalia idiopática de presión normal; II. factores de riesgo
cardiovascular; III. compliancia cerebral y mecanismo de Windkessel; IV. espacios paravasculares
y V. isquemia de sustancia blanca profunda.
Conclusiones: En la fisiopatología de HIPN, cuatro mecanismos son afectados en conjunto en
fases diferente: hidrodinamia venosa y compliancia cerebral; flujo sanguíneo cerebral e isquemia
de sustancia blanca profunda; mecanismo de Windkessel y sistema glinfático. Los factores de
riesgo cardiovasculares son los principales desencadenantes de HIPN, afectando los mecanismos
mencionados que influyen en la homeostasis de la hidrodinamia de LCR.
REFERENCIAS (EN ESTE ARTÍCULO)
Bateman GA. Pulse-wave encephalopathy: a comparative study of the hydrodynamics of leukoaraiosis and normalpressure hydrocephalus. Neuroradiol 2002;44:740–8. https://doi.org/10.1007/s00234-002-0812-0.
Zamboni P, Menegatti E, Weinstock-Guttman B, Schirda C, Cox JL, Malagoni AM, et al. The severity of chronic cerebrospinal venous insufficiency in patients with multiple sclerosis is related to altered cerebrospinal fluid dynamics. Funct Neurol 2009;24:133–8.
Bateman GA, Levi CR, Schofield P, Wang Y, Lovett EC. The venous manifestations of pulse wave encephalopathy: Windkessel dysfunction in normal aging and senile dementia. Neuroradiol 2008; 50:491–7. https://doi.org/10.1007/ s00234-008-0374-x.
Beggs CB. Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis. BMC Medicine 2013; 11:142.
Bateman GA. The pathophysiology of idiopathic normal pressure hydrocephalus: cerebral ischemia or altered venous hemodynamics? AJNR Am J Neuroradiol 2008;29:198–203.https://doi.org/10.3174/ajnr.A0739.
Stephensen H, Tisell M, Wikkelso C. There is no transmantle pressure gradient in communicating or noncommunicating hydrocephalus. Neurosur 2002; 50:763–71; discussion 71–3. https://doi org/10.1097/00006123-200204000-00016.
Ge Y, Law M, Johnson G, Herbert J, Babb JS, Mannon LJ, et al. Dynamic susceptibility contrast perfusion MR imaging of multiple sclerosis lesions: characterizing hemodynamic impairment and inflammatory activity. AJNR Am J Neuroradiol 2005;26:1539–47.
Bateman GA. Vascular compliance in normal pressure hydrocephalus. AJNR Am J Neuroradiol. 2000;21:1574–85.
Miyati T, Mase M, Kasai H, Hara M, Yamada K, Shibamoto Y, et al. Noninvasive MRI assessment of intracranial compliance in idiopathic normal pressure hydrocephalus. J Magn Reson Imaging 2007;26:274–8. https://doi. org/10.1002/jmri.20999.
Graff-Radford NR, Rezai K, Godersky JC, Eslinger P, Damasio H, Kirchner PT. Regional cerebral blood flow in normal pressure hydrocephalus. J Neurol Neurosurg Psych 1987;50:1589–96.
Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 2017;18:419–34. https://doi.org/10.1038/nrn.2017.48.
Silverberg GD, Mayo M, Saul T, Rubenstein E, McGuire D. Alzheimer's disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol 2003;2:506–11. https://doi. org/10.1016/S1474-4422(03)00487-3.
Mollenhauer B, Caspell-Garcia CJ, Coffey CS, Taylor P, et al. Longitudinal CSF biomarkers in patients with early Parkinson disease and healthy controls. Neurol 2017; 89:1959–69. https://doi.org/10.1212/wnl.0000000000004609.
Iadecola C. The pathobiology of vascular dementia. Neuron 2013; 80:844–66. https://doi.org/10.1016/j. neuron.2013.10.008.
Bradley WG, Whittemore AR, Watanabe AS, Davis SJ, Teresi LM, Homyak M. Association of deep white matter infarction with chronic communicating hydrocephalus: implications regarding the possible origin of normalpressure hydrocephalus. AJNR Am J Neuroradiol 1991;12:31–9.
Bradley WG, Jr. CSF flow in the brain in the context of normal pressure hydrocephalus. AJNR Am J Neuroradiol. 2015;36:831–8. https://doi.org/10.3174/ajnr.A4124.
Bateman GA, Levi CR, Schofield P, Wang Y, Lovett EC. The pathophysiology of the aqueduct stroke volume in normal pressure hydrocephalus: can co-morbidity with other forms of dementia be excluded?. Neuroradiol 2005; 47:741–8. https://doi.org/10.1007/s00234-005-1418-0.
Chrysikopoulos H. Idiopathic normal pressure hydrocephalus: thoughts on etiology and pathophysiology. Med Hypotheses 2009;73:718–24. https://doi.org/10.1016/j.mehy.2009.04.044.
Jaraj D, Agerskov S, Rabiei K, Marlow T, Jensen C, Guo X, et al. Vascular factors in suspected normal pressure hydrocephalus. Neurol 2016; 86:592–9. https://doi.org/10.1212/wnl.0000000000002369.
Belz GG. Elastic properties and Windkessel function of the human aorta. Cardiovasc Drugs Ther 1995;9:73–83.
Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010; 9:689–701. https://doi.org/10.1016/s1474-4422(10)70104-6.
Vernooij MW, van der Lugt A, Ikram MA, et al. Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurol 2008; 70:1208–14. https://doi.org/10.1212/01.wnl.0000307750.41970.d9.
Scuteri A, Nilsson PM, Tzourio C, Redon J, Laurent S. Microvascular brain damage with aging and hypertension. J Hypertens 2011; 29:1469–77. https://doi.org/10.1097/hjh.0b013e328347cc17.
Zhang JH, Badaut J, Tang J, Obenaus A, Hartman R, Pearce WJ. The vascular neural network—a new paradigm in stroke pathophysiology. Nat Rev Neurol 2012; 8:711–6. https://doi.org/10.1038/nrneurol.2012.210.
Owler BK, Momjian S, et al. Normal pressure hydrocephalus and cerebral blood flow: a pet study of baseline values. J Cereb Blood Flow Metab 2004; 24:17–23. https://doi.org/10.1097/01.wcb.0000093326.88757.49.
Momjian S, Owler BK, Czosnyka Z, Czosnyka M, Pena A, Pickard JD. Pattern of white matter regional cerebral blood flow and autoregulation in normal pressure hydrocephalus. Brain 2004; 127:965–72. https://doi.org/10.1093/brain/awh131.
Larsson A, Bergh AC, Bilting M, Arlig A, Jacobsson L, Stephensen H, et al. Regional cerebral blood flow in normal pressure hydrocephalus: diagnostic and prognostic aspects. Eur J Nucl Med 1994; 21:118–23.
Rodrigues MA, Samarasekera N, Lerpiniere C, et al. The Edinburgh CT and genetic diagnostic criteria for lobar intracerebral haemorrhage associated with cerebral amyloid angiopathy: model development and diagnostic test accuracy study. Lancet Neurol 2018; 17:232–40. https://doi.org/10.1016/s1474-4422(18)30006-1.
Brundel M, de Bresser J, et al. Cerebral microinfarcts: a systematic review of neuropathological studies. J Cereb Blood Flow Metab 2012;32:425–36. https://doi.org/10.1038/jcbfm.2011.200.
Kisler K, Nelson AR, Rege SV, Ramanathan A, Wang Y, Ahuja A, et al. Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat Neurosci 2017; 20:406–16. https://doi.org/10.1038/nn.4489.
Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci 2004; 5:347–60. https://doi.org/10.1038/nrn1387.
Nedergaard M. Garbage truck of the brain. Science 2013; 340:1529–30. https://doi.org/10.1126/science.1240514
Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat Rev Neurosci 2011;12:723–38. https://doi.org/10.1038/nrn3114.
Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid. Sci Transl Med 2012; 4:147ra11. https://doi.org/10.1126/scitranslmed.3003748.
Rungta RL, Charpak S. Astrocyte endfeet march to the beat of different vessels. Nat Neurosci 2016; 19:1539–41. https://doi.org/10.1038/nn.4446.
Syková E, Nicholson C. Diffusion in brain extracellular space. Physiol Rev 2008; 88:1277–340. https://doi. org/10.1152/physrev.00027.2007.