2019, Número 2
<< Anterior
CIU Cardiac Image Updated 2019; 1 (2)
Cardiotoxicidad, strain: evidencia actual
Vásquez OZY, Barrera GFE
Idioma: Español
Referencias bibliográficas: 35
Paginas: 61-66
Archivo PDF: 189.91 Kb.
RESUMEN
En la última década ha habido avances notables en el tratamiento del cáncer. La introducción de terapias dirigidas ha aumentado las tasas de cura y remisión en algunas de ellas. El resultado neto es la aparición de una cohorte de pacientes cuya supervivencia será suficiente para causar efectos secundarios cardiacos de las terapias utilizadas. En esta revisión trataremos el conocimiento actual sobre los mecanismos de cardiotoxicidad, los métodos tradicionales para su evaluación y las nuevas estrategias para su detección temprana.
REFERENCIAS (EN ESTE ARTÍCULO)
World Health Organization. Global Status Report on Noncommunicable Diseases 2014. 2015.
Knaul FM, Nigenda G, Lozano R, et al. Breast cancer in Mexico: a pressing priority. Reprod Health Matters 2008; 16: 113–123.
Bray F, Piñeros M. Cancer patterns, trends and projections in Latin America and the Caribbean: a global context. Salud Pública Mex. 2016; 58: 104-117.
Reynoso-Noverón N, Villarreal-Garza C, Soto-Pérez-de-Celis E et al. Clinical and epidemiological profile of breast cancer in Mexico: results of the Seguro Popular. J Glob Oncol. 2017; 3: 757-764.
Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Allen C et al. Global, Regional, and National Cancer Incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 Cancer Groups, 1990 to 2015: a systematic analysis for the Global Burden of Disease Study. JAMA Oncol. 2017; 3: 524-548.
Mavrogeni SI, Sfendouraki E, Markousis-Mavrogenis G et al. Cardio-oncology, the myth of Sisyphus, and cardiovascular disease in breast cancer survivors. Heart Fail Rev. Epub ahead of print el 27 de mayo de 2019. doi: 10.1007/s10741-019-09805-1.
Ewer MS, Ewer SM. Cardiotoxicity of anticancer treatments. Nat Rev Cardiol. 2015; 12: 547-558.
Yeh ETH, Chang HM. Oncocardiology-past, present, and future: a review. JAMA Cardiol. 2016; 1: 1066-1072.
Cuomo A, Rodolico A, Galdieri A et al. Heart failure and cancer: mechanisms of old and new cardiotoxic drugs in cancer patients. Card Fail Rev. 2019; 5: 112-118.
Tocchetti CG, Leppo MK, Bedja D et al. Cardiac over-expression of creatine kinase differentially affects cardiomyocyte function in ischemic and non-ischemic heart failure. Biophys J. 2016; 110: 599a.
Truitt R, Mu A, Corbin EA et al. Increased Afterload augments sunitinib-induced cardiotoxicity in an engineered cardiac microtissue model. JACC Basic Transl Sci. 2018; 3: 265-276.
Varricchi G, Marone G, Mercurio V et al. Immune checkpoint inhibitors and cardiac toxicity: an emerging issue. Curr Med Chem. 2018; 25: 1327-1339.
Love VA, Grabie N, Duramad P et al. CTLA-4 ablation and interleukin-12 driven differentiation synergistically augment cardiac pathogenicity of cytotoxic T lymphocytes. Circ Res. 2007; 101: 248-257.
López-Fernández T, Martín-García A et al. Cardio-Onco-Hematología en la práctica clínica. Documento de consenso y recomendaciones. Rev Esp Cardiol. 2017; 70: 474-486.
Plana JC, Galderisi M, Barac A et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the ASE and the EACVI. J Am Soc Echocardiogr. 2014; 27: 911-939.
Virani SA, Dent S, Brezden-Masley C et al. Canadian cardiovascular society guide-lines for evaluation and management of cardiovascular complications of cancer therapy. Can J Cardiol. 2016; 32: 831-841.
Armenian SH, Lacchetti C, Barac A et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2017; 35: 893-911.
Zamorano JL, Lancellotti P, Rodriguez Muñoz D et al. 2016 ESC Position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016; 37: 2768-2801.
VonHoff DD, Layard MW, Basa P et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979; 91: 710-717.
Peng X, Chen B, Lim CC, Sawyer DB. The cardiotoxicology of anthracycline chemotherapeutics: translating molecular mechanism into preventative medicine. Mol Interv. 2005; 5 (3): 163-171.
Ong G, Brezden-Masley C, Dhir V et al. Myocardial strain imaging by cardiac magnetic resonance for detection of subclinical myocardial dysfunction in breast cancer patients receiving trastuzumab and chemotherapy. Int J Cardiol. 2018; 261: 228-233.
Neilan TG, Coelho-Filho OR, Shah RV et al. Myocardial extracellular volume by cardiac magnetic resonance imaging in patients treated with anthracycline-based chemotherapy. Am J Cardiol. 2013; 111: 717-722.
Jordan JH, Todd RM, Vasu S, Hundley WG. Cardiovascular magnetic resonance in the oncology patient. JACC Cardiovasc Imaging. 2018; 11: 1150-1172.
Tsai HR, Gjesdal O, Wethal T et al. Left ventricular function assessed by two-dimensional speckle tracking echocardiography in long-term survivors of Hodgkin’s lymphoma treated by mediastinal radiotherapy with or without anthracycline therapy. Am J Cardiol. 2011; 107: 472-477.
Yingchoncharoen T, Agarwal S, Popovic ZB, Marwick TH. Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr. 2013; 26: 185-191.
Mantovani G, Madeddu C, Cadeddu C et al. Persistence, up to 18 months of follow-up, of epirubicin-induced myocardial dysfunction detected early by serial tissue Doppler echocardiography: correlation with inflammatory and oxidative stress markers. Oncologist. 2008; 13: 1296-1305.
Hequet O, Le QH, Moullet I et al. Subclinical late cardiomyopathy after doxorubicin therapy for lymphoma in adults. J Clin Oncol. 2004; 22: 1864-1871.
Erven K, Florian A, Slagmolen P et al. Subclinical cardiotoxicity detected by strain rate imaging up to 14 months after breast radiation therapy. Int J Radiat Oncol Biol Phys. 2013; 85: 1172-1178.
Fallah-Rad N, Walker JR, Wassef A et al. The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy. J Am Coll Cardiol. 2011; 57: 2263-2270.
Saha SK, Kiotsekoglou A, Toole RS, Moggridge JC, Nichols KJ, Govind S et al. Value of two-dimensional speckle tracking and real time three-dimensional echocardiography for the identification of subclinical left ventricular dysfunction in patients referred for routine echocardiography. Echocardiography. 2012; 29: 588-597.
Avi VM, Lang RM et al. Is Echocardiography reliable for monitoring the adverse cardiac effects of chemotherapy? J Am Col Cardiol. 2013; 61: 85-87.
Negishi T, Thavendiranathan P, Negishi K et al. Rationale and design of the Strain Surveillance of Chemotherapy for Improving Cardiovascular Outcomes: the SUCCOUR Trial. JACC Cardiovasc Imaging. 2018; 11: 1098-1105.
Yu W, Li SN, Chan GC, Ha SY, Wong SJ, Cheung YF. Transmural strain and rotation gradient in survivors of childhood cancers. Eur Heart J Cardiovasc Imaging. 2013; 14: 175-182.
Saha S, Kiotsekoglou A, Rena S et al. Value of two-dimensional speckle tracking and real time three-dimensional echocardiography for the identification of subclinical left ventricular dysfunction in patients referred for routine echocardiography. Echocardiography. 2012; 29: 588-597.
Bovelli D, Plataniotis G, Roila F, on behalf of the ESMO Guidelines Working Group. Cardiotoxicity of chemotherapeutic agents and radiotherapy-related heart disease: ESMO Clinical Practice Guidelines. Ann Oncol. 2010; 21 Suppl 5: 277-282.