2006, Número 1
<< Anterior Siguiente >>
Neumol Cir Torax 2006; 65 (1)
Daño pulmonar asociado con el uso de la bomba de circulación extracorpórea durante la cirugía cardiaca
Posadas CJG, Domínguez CG
Idioma: Español
Referencias bibliográficas: 56
Paginas: 40-46
Archivo PDF: 71.28 Kb.
RESUMEN
Se ha descrito la presencia de daño pulmonar secundario al uso de la bomba de circulación extracorpórea (BCE) durante la cirugía cardiaca, con incremento significativo de la morbi-mortalidad. La fisiopatología del daño pulmonar asociado a la BCE es similar a la del síndrome de insuficiencia respiratoria aguda (SIRA) por otras causas e involucra la presencia del síndrome de respuesta inflamatoria sistémica (SRIS) originado por una serie de mediadores liberados durante el procedimiento.
Las características clínicas del síndrome incluyen el daño pulmonar con aumento de las resistencias vasculares pulmonares, incremento del gradiente alvéolo-arterial de oxígeno con edema alveolar. La mayoría de los pacientes con el síndrome mejorarán en las siguientes 24 h después del BCE y no tendrán consecuencias.
REFERENCIAS (EN ESTE ARTÍCULO)
Fowler AA, Hamman RF, Good JT et al. Adult respiratory distress syndrome: risk with common predispositions. Ann Intern Med 1983; 98: 593-597.
Jonson MR. Low systemic vascular resistance after cardiopulmonary bypass: Are we any closer to understanding the enigma? Crit care Med 1999; 27: 1048-1049.
Cremer J, Martin M, Redl Il, et al. Systemic inflammatory response syndrome after cardiac operations. Ann Thorac Surg 1996; 61: 1714-20.
Utley JR, Pathophysiology of cardiopulmonary bypass: current issues. J Card Surg 1990; 5: 177-89.
Moore FD Jr, Warner KG, Assousa S, et al. The effects of complement activation during cardiopulmonary bypass: attenuation by hypothermia, heparin, and hemodilution. Ann Surg 1988; 208: 95-103.
Fosse E, Mollnes TE, Ingvaldsen B. Complement activation during major operations with or without cardiopulmonary bypass. J Thorac Cardiovasc Surg 1987; 93: 860-66.
Dreyer WJ, Michael LII, Millman EE, et al. Neutrophil sequestration and pulmonary dysfunction in a canine model of open heart surgery with cardiopulmonary bypass: evidence for a CD18-dependent mechanism. Circulation 1995; 92: 2276-83.
Gillinov Am, Redmond JM, Winkelstein JA, et al. Complement and neutrophil adhesion during cardiopulmonary bypass: a study in the complement-deficient dog. Ann Thorac Surg 1994; 57: 345-52.
Youker KA, Hawkins IIK, Kukielka GL, et al. Molecular evidence for induction of intracellular adhesion molecule-1 in the viable border zone associated with ischemiareperfusion injury of the dog heart. Circulation 1994; 89: 2736-46.
Prasad K, Kalra J, Chaudhary AK, et al. Polymorphonuclear leukocyte activation and cardiac function at organ and cellular level. Am Heart J 1990; 119: 538-50.
Prasad K, Kalra J, Bharadwaj B, et al. Increased oxygen free radical activity in patients on cardiopulmonary bypass undergoing aortocoronary bypass surgery. Am Heart J 1992; 123: 37-45.
Toivonen IIJ, Ahotupa M. Free radical free reaction products and antioxidant capacity in arterial plasma during coronary artery bypass grafting. J Thorac Cardiovasc Surg 1994; 108: 140-47.
Downing SW, Edmunds LII Jr. Release of vasoactive substances during cardiopulmonary bypass. Ann Thorac Surg 1992; 54: 1236-43.
Gadaleta D, Davis JM. Cardiopulmonary failure and the production of leukotrienes. J Am Coll Surg 1994; 178: 309-19.
Nilsson L, Kulander L, Nyström SO, et al. Endotoxins in cardiopulmonary bypass. J Thorac cardiovasc Surg 1990; 100: 777-80.
Baue AE. The role of the gut in the development of multiple organ dysfunction in cardiothoracic patients. Ann Thorac Surg 1993; 55: 822-39.
Sinclair DG Haslam PL, Quinlan GJ, et al. The effect of cardiopulmonary bypass on intestinal and pulmonary endothelial permeability. Chest 1995; 108: 718-24.
Riddington DW, Venkatesh B, Boivin CM, et al. Intestinal permeability, gastric intramucosal pH, and systemic endotoxemia in patients undergoing cardiopulmonary bypass. JAMA 1996; 275: 1007-12.
Jansen PGM, Velthuis II, Oudermans-van Straaten IIM, et al. Perfusion-related factors of endotoxin release during cardiopulmonary bypass. Eur J Cardiothorac Surg 1994; 8: 125-29.
Te Velthuis II, Jansen PGM, Oudemans-van Straaten IIM, et al. Myocardial performance in elderly patients after cardiopulmonary bypass is supressed by tumor necrosis factor. J Thorac Cardiovasc Surg 1995; 110: 1663-69.
Wan S, LeClerc JL, Vincent JL. Cytokine responses to cardiopulmonary bypass: lessons learned from cardiac transplantation. Ann Thorac Surg 1997; 63: 269-76.
Ko W, Hawes AS, Lazenby WD, et al. Myocardial reperfusion injury: platelet-activating factor stimulates polymorphonuclear leukocyte hydrogen peroxide production during myocardial reperfusion. J Thorac Cardiovasc Surg 1991; 102: 297-308.
Kubes P, Ibbotson G, Russell J, et al. Role of plateletactivating factor in ischemia/reperfusion-induced leukocyte adherence. Am J Physiol 1990; 259: G300-05.
Zehr KJ, Poston RS, Lee PC, et al. Platelet activating factor inhibition reduces lung injury after cardiopulmonary bypass. Ann Thorac Surg 1995; 59: 328-35.
Metha JL. Endothelium, coronary vasodilation, and organic nitrates. Am Heart J 1995; 129: 382-91.
Rodeberg DA, Chaet MS, Bass RC, et al. Nitric oxide: an overview. Am J Surg 1995; 170: 292-303.
Evora PRB, Pearson PJ, Shaff IIV. Impaired endotheliumdependent relaxation after coronary reperfusion injury: evidence of G-protein dysfunction. Ann Thorac Surg 1994; 57: 1550-56.
Michael JR, Markewitz BA. Endothelins and the lung. Am J Respir Crit Care Med 1996; 154: 555-81.
Zhu ZG, Wang MS, Jiang ZB, et al . The dynamic change of plasma endothelin-1 during the perioperative period in patients with rheumatic valvular disease and secondary pulmonary hypertension. J Thorac Cardiovasc Surg 1994; 108: 960-68.
Dupuis J, Stewart DJ, Cernacek P. Human pulmonary circulation is an important site for both clearance and production of endothelin-1. Circulation 1996; 94: 1578-84.
McGowan FX Jr, Davis PJ, Siewers RD, et al . Coronary vasoconstriction mediated by endothelin-1 in neonates: reversal by nitroglycerin. J Thorac Cardiovasc Surg 1995; 109: 88-98.
Hiramatsu T, Forbess JM, Miura T, et al . Effects of endothelin-1 and L-arginine after cold ischemia in lamb hearts. Ann Thorac Surg 1996; 61: 36-41.
Aharinejad S, Schraufnagel DE, Miksovsky A, et al. Endothelin-1 focally constricts pulmonary veins in rats. J Thorac Cardiovasc Surg 1995; 110: 148-56.
Tonz M, Mihaljevic T, von Segesser LK, et al. Acute Lung Injury during cardiopulmonary bypass: are the neutrophils responsible ?. Chest 1995; 108: 1551-1556.
Torii K, Lida KI, Miyazaki Y, et al. Higher concentrations of matrix metalloproteinases in bronchoalveolar lavage fluid of patients with adult respiratory distress syndrome. Am J Respir Crit Care Med 1997; 155: 43-46.
Pearl JM, Nelson DP, Wellmann SA, et al. Acute hypoxia and reoxygenation impairs exhaled nitric oxide release and pulmonary mechanics. Thorac Cardiovasc Surg 2000; 119: 931-938.
Carney DE, Lutz CJ, Picone AL, et al. Matrix metalloproteinase inhibitor prevents acute lung injury after cardiopulmonary bypass. Circulation 1999; 100: 400-406.
Brismar B, Hedenstierna G, Lundquist H, et al. Pulmonary densities during anesthesia with muscular relaxation: a proposal of atelectasis. Anesthesiology 1985; 62: 247-254.
Taggart DP. Respiratory dysfunction alter cardiac surgery: effects of avoiding cardiopulmonary bypass and the use of bilateral internal mammary arteries. Eur J cardiothorac Surg 2000; 18: 31-37.
Birdi I, Regragui IA, SIAT MB, et al . Effects of cardiopulmonary bypass temperature on pulmonary gas exchange after coronary artery operations. Ann Thorac Surg 1996; 61: 118-123.
Ranucci M, Soro G, Frigiola A, et al. Normothermic perfusion and lung function after cardiopulmonary bypass, effects in pulmonary risk patients. Perfusion 1997; 12: 309-315.
Diegeler A, Doll N, Rauch T, et al. Humoral immune response during coronary artery bypass grafting: a comparison of limited approach, “off pump” technique, and conventional cardiopulmonary bypass. Circulation 2000; 102(suppl): III95-III100.
Matata BM, Sosnowski AW, Galinanes M. Off pump bypass graft operation significantly reduces oxidative stress and inflammation. Ann Thorac Surg 2000; 69: 785-791.
Cox CM, Ascione R, Cohen AM, et al. Effect of cardiopulmonary bypass on pulmonary gas Exchange: a prospective randomized study. Ann Thorac Surg 2000; 69: 140-145.
Picone AL, Lutz CJ, Finck C, et al. Multiple sequential insults cause post-pump syndrome. Ann Thorac Surg 1999 ; 67 : 978-985.
Chaney MA, Nikolov MP, Blakeman B, et al. Pulmonary effects of methylprednisolone in patients undergoing coronary artery bypass grafting and early tracheal extubation. Anesth Analg 1998; 87: 27-33.
Wan S, LeClerc JL, Vincent JL. Inflammatory response to cardiopulmonary bypass: mechanisms involved and possible therapeutic strategies. Chest 1997; 112: 676-692.
Gu YJ, de Vries AJ, Vos P, et al. Leukocyte depletion during cardiac operation: A new approach through the venous bypass circuit. Ann Thorac Surg 1999; 67:604–609
Johnson D, Thomson D, Mycyk T, et al. Depletion of neutrophils by filter during aortocoronary bypass surgery transiently improves postoperative cardiorespiratory status. Chest 1995; 107:1253–1259
Nagashima M, Shin’oka T, Nollert G, et al. High volume continuous hemofiltration during cardiopulmonary bypass attenuates pulmonary dysfunction in neonatal lambs after deep hypothermic circulatory arrest. Circulation 1998; 98(suppl): II378–II384
Wan S, LeClerc JL, Antoine M, et al. Heparin-coated circuits reduce myocardial injury in heart or heart-lung transplantation: a prospective, randomized study. Ann Thorac Surg 1999; 68:1230–1235
Magnusson L, Wicky S, Tyden H, et al. Repeated vital capacity maneuvers after cardiopulmonary bypass effects on lung function in a pig model. Br J Anaes 1998; 80:682–684.
Loer SA, Scheeren TW, Tarnow J. How much oxygen does the human lung consume? Anesthesiology 1997; 86:532–537
Serraf A, Robotin M, Bonnet N, et al. Alteration of the neonatal pulmonary physiology after total cardiopulmonary bypass. Thorac Cardiovasc Surg 1997; 114:1061–1069
Suzuki T, Fukuda T, Ito T, et al. Continuous pulmonary perfusion during cardiopulmonary bypass prevents lung injury in infants. Ann Thorac Surg 2000; 69:602–606
Richter JA, Meisner H, Tassani P, et al. Drew-Anderson technique attenuates systemic inflammatory response syndrome and improves respiratory function after coronary artery bypass grafting. Ann Thorac Surg 1999; 69:77–83