2019, Número 1
<< Anterior Siguiente >>
Rev Educ Bioquimica 2019; 38 (1)
Ejercicio y metformina: dos mecanismos que convergen para la prevención de la sarcopenia en el envejecimiento. Una mirada al contexto social y molecular
Hernández-Álvarez D; López-Diázguerrero NE, Luna-López A, Konigsberg M
Idioma: Español
Referencias bibliográficas: 55
Paginas: 3-13
Archivo PDF: 708.07 Kb.
RESUMEN
El sedentarismo que impera en la vida moderna predispone al organismo a enfermedades
crónico-degenerativas durante el envejecimiento. La pérdida del músculo
esquelético o sarcopenia genera discapacidad física, pérdida de la independencia, y
favorece el riesgo de mortalidad. Para prevenirla se estudian intervenciones como
el ejercicio y el uso de medicamentos como la metformina, que activan interesantes
vías metabólicas de protección.
REFERENCIAS (EN ESTE ARTÍCULO)
Guerrero M L, León SA (2010) Estilo de vida y salud. Educere 14:13-19.
Barragán LL, González PM, Estrada MS, Hernández CY, Hernández CE, Ríos VJ, Flores SM (2015) Estilo de vida y dimensiones. En: Estudiantes universitarios de área de la salud. Ciencia y Humanismo en la Salud. México, pp 53-63.
INEGI,2016:http://www. inegi. o r g . mx/saladeprensa/aproposito/2016/ poblacion2016_0.pdf
INEGI, 2014: http://www.inegi.org.mx/ saladeprensa/aproposito/2014/adultos0.pdf
ENIGH2012: https://www.gob.mx/cms/ uploads/attachment/file/9640/inegi_2012.pdf
MOPRADEF,2016:http://www.inegi.org.mx/ saladeprensa/boletines/2016/especiales/ especiales2016_01_08.pdf
Hodes RJ, Sierra F, Austad SN, Epel E, Neigh GN, Erlandson KM, Schafer MJ, LeBrasseur NK, Wiley C, Campisi J, Sehl ME, Scalia R, Eguchi S, Kasinath BS, Halter JB, Cohen HJ, Demark-Wahnefried W, Ahles TA, Barzilai N, Hurria A, Hunt PW (2016) Disease drivers of aging. Ann N Y Acad Sci 1386:45-68.
Espinel-Bermúdez MC, Sánchez-García S, García-Peña C, Trujillo X, Huerta-Viera M, Granados-García V, Hernández-González S, Arias-Merino ED (2018) Associated factors with sarcopenia among Mexican elderly: 2012 National Health and Nutrition Survey. Rev Med Inst Mex Seguro Soc. 56:S46-S53.
Serra RJ. Consecuencias Clínicas de la sarcopenia. 2006. Nutr. Hosp. 21: 46-50.
Montero FN, Serra RJ. Role of exercise on sarcopenia in the elderly (2013) Eur J Phys Rehabil Med 49:131-143.
Cruz JA, Landi F, Topinkova E, Michel JP (2010) Understanding sarcopenia as a geriatric syndrome. Curr Opin Clin Nutr Metab Care 13:1-7
Kim TN, Choi KM (2013) Sarcopenia: definition, epidemiology, and pathophysiology. J BoneMetab 20:1–10.
Gonzalez-Freire M, Adelnia F, Moaddel R, Ferrucci L (2018) Searching for a mitochondrial root to the decline in muscle function with ageing. J Cach Sarc Musc 9:435-440.
Hang C, Yahui K, Hong Z (2012) Oxidative Stress, Mitochondrial Dysfunction, and Aging. J Signal Transduct 2012: 646354.
Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy -inflammationcell death axis in organismal aging. Science 333:1109-1112.
Bellanti F, Romano AD, Lo Buglio A, Castriotta V, Guglielmi G, Greco A, Serviddio G, Vendemiale G (2018) Oxidative stress is increased in sarcopenia and associated with cardiovascular disease risk in sarcopenic obesity. Maturitas 109:6-12.
Denison HJ, Cooper C, Sayer AA, Robinson SM (2015) Prevention and optimal management of sarcopenia: a review of combined exercise and nutrition interventions to improve muscle outcomes in older people. Clin Interv Aging 10:859-869.
Zampieri S, Mosole S, Löfler S, Fruhmann H, Burggraf S, Cvečka J, Hamar D, Sedliak M, Tirptakova V, Šarabon N, Mayr W, Kern H (2015) Physical Exercise in Aging: Nine Weeks of Leg Press or Electrical Stimulation Training in 70 Years Old Sedentary Elderly People. Eur J Transl Myol 25:237-242.
Senesi P, Montesano A, Luzi L, Codella R, Benedini S, Terruzzi I (2016) Metformin Treatment Prevents Sedentariness Related Damages in Mice. J Diabetes Res 2016:1-11.
Wessels B, Ciapaite J, van den Broek NM, Nicolay K, Prompers JJ (2014) Metformin impairs mitochondrial function in skeletal muscle of both lean and diabetic rats in a dose-dependent manner. PLoS One 9:e100525.
Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, Inzucchi SE, Schumann WC, Petersen KF, Landau BR, Shulman GI (2000) Mechanism by which MTF ormin reduces glucose production in type 2 diabetes. Diabetes 49:2063-2069.
Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk- Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 108:1167-1174.
Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, Gomes AP, Ward TM, Minor RK, Blouin MJ, Schwab M, Pollak M, Zhang Y, Yu Y, Becker KG, Bohr VA, Ingram DK, Sinclair DA, Wolf NS, Spindler SR, Bernier M, de Cabo R (2013) Metformin improves healthspan and lifespan in mice. Nat Commun 4:2192.
Chakraborty A, Chowdhury S, Bhattacharyya M (2011) Effect of metformin on oxidative stress, nitrosative stress and inflammatory biomarkers in type 2 diabetes patients. Diabetes Res Clin Pract 93:56-62.
Zayyanu U U, Abu A B and Mohamed M (2016) Metformin Reduces Oxidative Stress Status and Improves Plasma. J Pharm Nut Sci 6:120- 125.
Pandey A, Kumar VL (2016) Protective Effect of Metformin against Acute Inflammation and Oxidative Stress in Rat. Drug Dev Res 77:278- 284.
Kim YC, Guan KL (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125:25-32.
Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13:1016-1023.
Röhling M, Herder C, Stemper T, Müssig K (2016) Influence of Acute and Chronic Exercise on Glucose Uptake. J Diabetes Res 2016:2868652.
Richter EA, Ruderman NB (2009) AMPK and the biochemistry of exercise: implications for human health and disease. Biochem J Mar 418:261-275.
Dreyer HC, Fujita S, Cadenas JG, Chinkes DL, Volpi E, Rasmussen BB (2006) Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiol 576:613- 624.
Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk- Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2012) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167-1174.
Jessen N, An D, Lihn AS, Nygren J, Hirshman MF, Thorell A, Goodyear LJ (2011) Exercise increases TBC1D1 phosphorylation in human skeletal muscle. Am J Physiol Endocrinol Metab 301:E164-71
Huang S, Czech MP (2007) The GLUT4 glucose transporter. Cell Metab 5:237-252.
Southgate RJ, Neill B, Prelovsek O, El-Osta A, Kamei Y, Miura S, Ezaki O, McLoughlin TJ, Zhang W, Unterman TG, Febbraio MA (2007) FOXO1 regulates the expression of 4E-BP1 and inhibits mTOR signaling in mammalian skeletal muscle. J Biol Chem 282:21176-2186.
Lee K, Ochi E, Song H, Nakazato K (2015) Activation of AMP-activated protein kinase induce expression of FoxO1, FoxO3a, and myostatin after exercise-induced muscle damage. Biochem Biophys Res Commun 466:289-294.
Yun H, Park S, Kim MJ, Yang WK, Im DU, Yang KR, Hong J, Choe W, Kang I, Kim SS, Ha J (2014) AMP-activated protein kinase mediates the antioxidant effects of resveratrol through regulation of the transcription factor FoxO1. FEBS J 281:4421-4438.
Xiaoyu L, Kover KL, Heruth DP, Watkins DJ, Moore WV, Jackson K, Zang M, Clements MA, Yan Y (2015) New Insight Into Metformin Action: Regulation of ChREBP and FOXO1 Activities in Endothelial Cells. Mol Endocrinol 29:1184–1194.
Mounier R, Lantier L, Leclerc J, Sotiropoulos A, Pende M, Daegelen D, Sakamoto K, Foretz M, Viollet B (2009) Important role for AMPKalpha1 in limiting skeletal muscle cell hypertrophy. FASEB J 23:2264-2273.
Mounier R, Lantier L, Leclerc J, Sotiropoulos A, Foretz M, Viollet B (2011) Antagonistic control of muscle cell size by AMPK and mTORC1. 2011. Cell Cycle 10:2640-2646.
Zanchi NE, Lancha AH Jr (2008) Mechanical stimuli of skeletal muscle: implications on mTOR/p70s6k and protein synthesis. Eur J Appl Physiol 102:253-263.
Sakamoto K, Aschenbach WG, Hirshman MF, Goodyear LJ (2003) Akt signaling in skeletal muscle: regulation by exercise and passive stretch. Am J Physiol Endocrinol Metab 285:E1081-1088.
Salminen A, Hyttinen JM, Kaarniranta K (2011) AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan. J Mol Med (Berl) 89:667-676.
Bano G, Trevisan C, Carraro S, Solmi M, Luchini C, Stubbs B, Manzato E, Sergi G, Veronese N (2017) Inflammation and sarcopenia: A systematic review and metaanalysis. Maturitas 96:10-15.
Kalinkovich A, Livshits G (2017) Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res Rev 35:200-221.
Sanada F, Taniyama Y, Muratsu J, Otsu R, Shimizu H, Rakugi H, Morishita R (2018) Source of Chronic Inflammation in Aging. Front Cardiovasc Med. 22:12. eCollection 2018.
Bektas A, Schurman SH, Sen R, Ferrucci L (2018) Aging, inflammation and the environment. Exp Gerontol 105:10-18.
Olivieri F, Prattichizzo F, Grillari J, Balistreri CR (2018) Cellular Senescence and Inflammaging in Age-Related Diseases. Mediators Inflamm. 17;2018:9076485.
González-Puertos VY, Maciel-Barón LÁ, Barajas-Gómez BA, López-Diazguerrero, NE, Königsberg M (2015) Participación del fenotipo secretor de las células senescentes en el desarrollo del cáncer, el envejecimiento y las enfermedades asociadas a la edad. Gac Méd Mex151:491-500.
Warne JP (2003) Tumour necrosis factor alpha: a key regulator of adipose tissue mass. J Endocrinol 177:351-355.
Ferrucci L, Corsi A, Lauretani F, Bandinelli S, Bartali B, Taub DD, Guralnik JM, Longo DL (2005) The origins of age-related proinflammatory state. Blood 105:2294- 2299.
Akbar DH(2003) Effect of metformin and sulfonylurea on C-reactive protein level in well-controlled type 2 diabetics with metabolic síndrome. Endocrine 20:215-218.
Boulé NG, Kenny GP, Larose J, Khandwala F, Kuzik N, Sigal RJ (2013) Does metformin modify the effect on glycaemic control of aerobic exercise, resistance exercise or both? Diabetologia 56:2378-2382.
Hansen M, Palsøe MK, Helge JW, Dela F (2015) The effect of metformin on glucose homeostasis during moderate exercise. Diabetes Care 38:293-301.
Long DE, Peck BD, Martz JL, Tuggle SC, Bush HM, McGwin G, Kern PA, Bamman MM, Peterson CA (2017) Metformin to Augment Strength Training Effective Response in Seniors (MASTERS): study protocol for a randomized controlled trial. Trials 18:192.