2019, Número 3
Siguiente >>
Rev Invest Clin 2019; 71 (3)
Nutrigenomics as a Tool in the Prevention of Lipotoxicity: The Case of Soy Protein
Torres N, Torre-Villalvazo I, Tovar AR
Idioma: Ingles.
Referencias bibliográficas: 98
Paginas: 157-167
Archivo PDF: 317.08 Kb.
RESUMEN
Sin resumen.
REFERENCIAS (EN ESTE ARTÍCULO)
Fan JG, Cao HX. Role of diet and nutritional management in non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2013; 28 Suppl 4:81-7.
Dongiovanni P, Valenti L. A nutrigenomic approach to non-alcoholic fatty liver disease. Int J Mol Sci. 2017;18:e1534.
Ortega Á, Berná G, Rojas A, Martín F, Soria B. Gene-diet interactions in Type 2 diabetes: the chicken and egg debate. Int J Mol Sci. 2017;18:e1188.
Goodridge AG, Fantozzi DA, Klautky SA, et al. Nutritional and hormonal regulation of genes for lipogenic enzymes. Proc Nutr Soc. 1991;50:115-22.
Berná G, Oliveras-López MJ, Jurado-Ruíz E, et al. Nutrigenetics and nutrigenomics insights into diabetes etiopathogenesis. Nutrients. 2014;6:5338-69.
Kani AH, Alavian SM, Esmaillzadeh A, et al. Effects of a lowcalorie, low-carbohydrate soy containing diet on systemic inflammation among patients with nonalcoholic fatty liver disease: a parallel randomized clinical trial. Horm Metab Res. 2017; 49:687-92.
Ma D, Taku K, Zhang Y, et al. Serum lipid-improving effect of soyabean β-conglycinin in hyperlipidaemic menopausal women. Br J Nutr. 2013;110:1680-4.
Messina M. Soy and health update: evaluation of the clinical and epidemiologic literature. Nutrients. 2016;8:754.
Ruscica M, Pavanello C, Gandini S, et al. Effect of soy on metabolic syndrome and cardiovascular risk factors: a randomized controlled trial. Eur J Nutr. 2018;57:499-511.
Torres N, Torre-Villalvazo I, Tovar AR. Future directions in reducing hepatic lipotoxicity. Future Lipidol. 2006;1:331-41.
Unger RH. Lipid overload and overflow: metabolic trauma and the metabolic syndrome. Trends Endocrinol Metab. 2003;14: 398-403.
Unger RH, Orci L. Diseases of liporegulation: new perspective on obesity and related disorders. FASEB J. 2001;15:312-21.
Hall KD, Heymsfield SB, Kemnitz JW, et al. Energy balance and its components: implications for body weight regulation. Am J Clin Nutr. 2012;95:989-94.
Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome an allostatic perspective. Biochim Biophys Acta. 2010;1801:338-49.
Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM. MPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 1994;8:1224-34.
Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell. 1994;79:1147-56.
Lefterova MI, Haakonsson AK, Lazar MA, Mandrup S. PPARγ and the global map of adipogenesis and beyond. Trends Endocrinol Metab. 2014;25:293-302.
Pellegrinelli V, Carobbio S, Vidal-Puig A. Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia. 2016;59:1075-88.
Liu XJ, Wu XY, Wang H, et al. Renal injury in seipin-deficient lipodystrophic mice and its reversal by adipose tissue transplantation or leptin administration alone: adipose tissue-kidney crosstalk. FASEB J. 2018;32:5550-62.
Kim JK, Gavrilova O, Chen Y, Reitman ML, Shulman GI. Mechanism of insulin resistance in A-ZIP/F-1 fatless mice. J Biol Chem. 2000;275:8456-60.
Kim JY, van de Wall E, Laplante M, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest. 2007;117:2621-37.
Vázquez-Vela ME, Torres N, Tovar AR. White adipose tissue as endocrine organ and its role in obesity. Arch Med Res. 2008; 39:715-28.
Carobbio S, Pellegrinelli V, Vidal-Puig A. Adipose tissue function and expandability as determinants of lipotoxicity and the metabolic syndrome. Adv Exp Med Biol. 2017;960:161-96.
Gray SL, Vidal-Puig AJ. Adipose tissue expandability in the maintenance of metabolic homeostasis. Nutr Rev. 2007; 65:S7-12.
Baker RG, Hayden MS, Ghosh S. NF-κB, inflammation, and metabolic disease. Cell Metab. 2011;13:11-22.
Unger RH, Clark GO, Scherer PE, Orci L. Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim Biophys Acta. 2010;1801:209-14.
Han J, Kaufman RJ. The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res. 2016;57:1329-38.
Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 2010;140:900-17.
Shimomura I, Bashmakov Y, Ikemoto S, et al. Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc Natl Acad Sci U S A. 1999;96:13656-61.
Linden AG, Li S, Choi HY, et al. Interplay between chREBP and SREBP-1c coordinates postprandial glycolysis and lipogenesis in livers of mice. J Lipid Res. 2018;59:475-87.
Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002;109:1125-31.
Xu X, So JS, Park JG, Lee AH. Transcriptional control of hepatic lipid metabolism by SREBP and chREBP. Semin Liver Dis. 2013; 33:301-11.
Schwarz JM, Linfoot P, Dare D, Aghajanian K. Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. Am J Clin Nutr. 2003;77:43-50.
Moon YA. The SCAP/SREBP pathway: a Mediator of hepatic steatosis. Endocrinol Metab (Seoul). 2017;32:6-10.
Dai W, Ye L, Liu A, et al. Prevalence of nonalcoholic fatty liver disease in patients with Type 2 diabetes mellitus: a meta-analysis. Medicine (Baltimore). 2017;96:e8179.
Hue L, Taegtmeyer H. The randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab. 2009;297:E578-91.
Soares RN, Reimer RA, Doyle-Baker PK, Murias JM. Metabolic inflexibility in individuals with obesity assessed by near-infrared spectroscopy. Diab Vasc Dis Res. 2017;14:502-9.
Jung SH, Jung CH, Reaven GM, Kim SH. Adapting to insulin resistance in obesity: role of insulin secretion and clearance. Diabetologia. 2018;61:681-7.
Fan W, Waizenegger W, Lin CS, et al. PPARδ promotes running endurance by preserving glucose. Cell Metab. 2017;25:1186- 930000.
Kleiner S, Nguyen-Tran V, Baré O, et al. PPAR{delta} agonism activates fatty acid oxidation via PGC-1{alpha} but does not increase mitochondrial gene expression and function. J Biol Chem. 2009;284:18624-33.
Jäger S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A. 2007;104:12017-22.
Jensen J, O’Rahilly S. AMPK is required for exercise to enhance insulin sensitivity in skeletal muscles. Mol Metab. 2017;6:315-6.
Panzhinskiy E, Hua Y, Culver B, Ren J, Nair S. Endoplasmic reticulum stress upregulates protein tyrosine phosphatase 1B and impairs glucose uptake in cultured myotubes. Diabetologia. 2013; 56:598-607.
Oh YS, Bae GD, Baek DJ, Park EY, Jun HS. Fatty acid-induced lipotoxicity in pancreatic beta-cells during development of Type 2 diabetes. Front Endocrinol (Lausanne). 2018;9:384.
Cnop M, Ladrière L, Igoillo-Esteve M, Moura RF, Cunha DA. Causes and cures for endoplasmic reticulum stress in lipotoxic β-cell dysfunction. Diabetes Obes Metab. 2010;12 Suppl 2:76-82.
Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474:1823-36.
Baothman OA, Zamzami MA, Taher I, Abubaker J, Abu-Farha M. The role of gut microbiota in the development of obesity and diabetes. Lipids Health Dis. 2016;15:108.
Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis. 2015; 26:26191.
Boulangé CL, Neves AL, Chilloux J, Nicholson JK, Dumas ME. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016;8:42.
Marra F, Svegliati-Baroni G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol. 2018;68:280-95.
Munukka E, Pekkala S, Wiklund P, et al. Gut-adipose tissue axis in hepatic fat accumulation in humans. J Hepatol. 2014;61: 132-8.
Chavez-Santoscoy RA, Gutierrez-Uribe JA, Granados O, et al. Flavonoids and saponins extracted from black bean (Phaseolus vulgaris L.) seed coats modulate lipid metabolism and biliary cholesterol secretion in C57BL/6 mice. Br J Nutr. 2014; 112:886-99.
Chávez-Santoscoy RA, Tovar AR, Serna-Saldivar SO, Torres N, Gutiérrez-Uribe JA. Conjugated and free sterols from black bean (Phaseolus vulgaris L.) seed coats as cholesterol micelle disruptors and their effect on lipid metabolism and cholesterol transport in rat primary hepatocytes. Genes Nutr. 2014;9:367.
Leal-Díaz AM, Noriega LG, Torre-Villalvazo I, et al. Aguamiel concentrate from agave salmiana and its extracted saponins attenuated obesity and hepatic steatosis and increased akkermansia muciniphila in C57BL6 mice. Sci Rep. 2016;6:34242.
Sanchez-Tapia M, Aguilar-Lopez M, Perez-Cruz C, et al. Nopal (Opuntia ficus indica) protects from metabolic endotoxemia by modifying gut microbiota in obese rats fed high fat/sucrose diet. Sci Rep. 2017;7:4716.
Serrano JC, Cassanye A, Martín-Gari M, Granado-Serrano AB, Portero-Otín M. Effect of dietary bioactive compounds on mitochondrial and metabolic flexibility. Diseases 2016;4:e14.
Yan C, Sun W, Wang X, et al. Punicalagin attenuates palmitateinduced lipotoxicity in hepG2 cells by activating the keap1- nrf2 antioxidant defense system. Mol Nutr Food Res. 2016; 60:1139-49.
Zhou Y, Lin S, Zhang L, Li Y. Resveratrol prevents renal lipotoxicity in high-fat diet-treated mouse model through regulating PPAR-α pathway. Mol Cell Biochem. 2016;411:143-50.
García MC, Torre M, Marina ML, Laborda F. Composition and characterization of soyabean and related products. Crit Rev Food Sci Nutr. 1997;37:361-91.
US Department of Agriculture, ARS. Nutrient Data Laboratory. USDA National Nutrient Database for Standard Reference. 2018; Available from: https://www.ndb.nal.usda.gov/ndb/ foods. [Visitado el 02-01-2019].
Torres NT, Tovar-Palacio AR. The importance of soy in Mexico, its nutritional value and effect on health. Salud Publica Mex. 2009;51:246-54.
Anderson JW. Beneficial effects of soy protein consumption for renal function. Asia Pac J Clin Nutr. 2008;17 Suppl 1:324-8.
Anderson JW, Blake JE, Turner J, Smith BM. Effects of soy protein on renal function and proteinuria in patients with Type 2 diabetes. Am J Clin Nutr. 1998;68:1347S-1353S.
Tovar AR, Murguía F, Cruz C, et al. A soy protein dietalters hepatic lipid metabolism gene expression and reduces serum lipids and renal fibrogenic cytokines in rats with chronic nephrotic syndrome. J Nutr. 2002;132:2562-9.
Trujillo J, Ramírez V, Pérez J, et al. Renal protection by a soy diet in obese zucker rats is associated with restoration of nitric oxide generation. Am J Physiol Renal Physiol. 2005;288:F108-16.
Jenkins DJ, Mirrahimi A, Srichaikul K, et al. Soy protein reduces serum cholesterol by both intrinsic and food displacement mechanisms. J Nutr. 2010;140:2302S-2311S.
Li SS, Mejia SB, Lytvyn L, et al. Effect of plant protein on blood lipids: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2017;6:e006659.
Torres N, Torre-Villalvazo I, Tovar AR. Regulation of lipid metabolism by soy protein and its implication in diseases mediated by lipid disorders. J Nutr Biochem. 2006;17:365-73.
Ascencio C, Torres N, Isoard-Acosta F, et al. Soy protein affects serum insulin and hepatic SREBP-1 mRNA and reduces fatty liver in rats. J Nutr. 2004;134:522-9.
Hashidume T, Sasaki T, Inoue J, Sato R. Consumption of soy protein isolate reduces hepatic SREBP-1c and lipogenic gene expression in wild-type mice, but not in FXR-deficient mice. Biosci Biotechnol Biochem. 2011;75:1702-7.
Torre-Villalvazo I, Tovar AR, Ramos-Barragán VE, Cerbón-Cervantes MA, Torres N. Soy protein ameliorates metabolic abnormalities in liver and adipose tissue of rats fed a high fat diet. J Nutr. 2008;138:462-8.
Tovar AR, Torre-Villalvazo I, Ochoa M, et al. Soy protein reduces hepatic lipotoxicity in hyperinsulinemic obese zucker fa/fa rats. J Lipid Res. 2005;46:1823-32.
Noriega-López L, Tovar AR, Gonzalez-Granillo M, et al. Pancreatic insulin secretion in rats fed a soy protein high fat diet depends on the interaction between the amino acid pattern and isoflavones. J Biol Chem. 2007;282:20657-66.
Aréchiga-Figueroa IA, Morán-Zendejas R, Delgado-Ramírez M, Rodríguez-Menchaca AA. Phytochemicals genistein and capsaicin modulate kv2.1 channel gating. Pharmacol Rep. 2017; 69:1145-53.
Contreras AV, Torres N, Tovar AR. PPAR-α as a key nutritional and environmental sensor for metabolic adaptation. Adv Nutr. 2013;4:439-52.
Oliva ME, Chicco A, Lombardo YB. Mechanisms underlying the beneficial effect of soy protein in improving the metabolic abnormalities in the liver and skeletal muscle of dyslipemic insulin resistant rats. Eur J Nutr. 2015;54:407-19.
Hakkak R, Gauss CH, Bell A, Korourian S. Short-term soy protein isolate feeding prevents liver steatosis and reduces serum ALT and AST levels in obese female zucker rats. Biomedicines 2018;6:e55.
Kani AH, Alavian SM, Esmaillzadeh A, Adibi P, Azadbakht L. Effects of a novel therapeutic diet on liver enzymes and coagulating factors in patients with non-alcoholic fatty liver disease: a parallel randomized trial. Nutrition. 2014;30:814-21.
Adams JM 2nd, Pratipanawatr T, Berria R, et al. Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes. 2004;53:25-31.
Thomson DM, Winder WW. AMP-activated protein kinase control of fat metabolism in skeletal muscle. Acta Physiol. (Oxf) 2009;196:147-54.
Palacios-González B, Zarain-Herzberg A, Flores-Galicia I, et al. Genistein stimulates fatty acid oxidation in a leptin receptorindependent manner through the JAK2-mediated phosphorylation and activation of AMPK in skeletal muscle. Biochim Biophys Acta. 2014;1841:132-40.
Li W, Ruan W, Peng Y, Wang D. Soy and the risk of Type 2 diabetes mellitus: a systematic review and meta-analysis of observational studies. Diabetes Res Clin Pract. 2018;137:190-9.
Tian S, Xu Q, Jiang R, et al. Dietary protein consumption and the risk of Type 2 diabetes: a systematic review and meta-analysis of cohort studies. Nutrients. 2017;9:e982.
Tatsumi Y, Morimoto A, Deura K, et al. Effects of soybean product intake on fasting and postload hyperglycemia and Type 2 diabetes in japanese men with high body mass index: the saku study. J Diabetes Investig. 2013;4:626-33.
Ramdath DD, Padhi EM, Sarfaraz S, Renwick S, Duncan AM. Beyond the cholesterol-lowering effect of soy protein: a review of the effects of dietary soy and its constituents on risk factors for cardiovascular disease. Nutrients. 2017;9:e324.
Zhang YB, Chen WH, Guo JJ, et al. Soy isoflavone supplementation could reduce body weight and improve glucose metabolism in non-asian postmenopausal women a meta-analysis. Nutrition. 2013;29:8-14.
Miranda N, Tovar AR, Palacios B, Torres N. AMPK as a cellular energy sensor and its function in the organism. Rev Invest Clin. 2007;59:458-69.
Alemán G, Torres N, Tovar AR. Peroxisome proliferator-activated receptors (PPARs) in obesity and insulin resistance development. Rev Invest Clin. 2004;56:351-67.
Díaz-Villaseñor A, Granados O, González-Palacios B, et al. Differential modulation of the functionality of white adipose tissue of obese zucker (fa/fa) rats by the type of protein and the amount and type of fat. J Nutr Biochem. 2013; 24:1798-809.
Frigolet ME, Torres N, Tovar AR. Soya protein attenuates abnormalities of the renin-angiotensin system in adipose tissue from obese rats. Br J Nutr. 2012;107:36-44.
Frigolet ME, Torres N, Uribe-Figueroa L, et al. White adipose tissue genome wide-expression profiling and adipocyte metabolic functions after soy protein consumption in rats. J Nutr Biochem. 2011;22:118-29.
Spiegelman BM. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes. 1998;47:507-14.
Medina-Gomez G, Gray S, Vidal-Puig A. Adipogenesis and lipotoxicity: role of peroxisome proliferator-activated receptor gamma (PPARgamma) and PPARgammacoactivator-1 (PGC1). Public Health Nutr. 2007;10:1132-7.
Aziz SA, Wakeling LA, Miwa S, et al. Metabolic programming of a beige adipocyte phenotype by genistein. Mol Nutr Food Res 2017;61:1600574.
López P, Sánchez M, Perez-Cruz C, et al. Long-term genistein consumption modifies gut microbiota, improving glucose metabolism, metabolic endotoxemia, and cognitive function in mice fed a high-fat diet. Mol Nutr Food Res. 2018;62: e1800313.
Vespasiani-Gentilucci U, Gallo P, Picardi A. The role of intestinal microbiota in the pathogenesis of NAFLD: starting points for intervention. Arch Med Sci. 2018;14:701-6.
Guevara-Cruz M, Lai CQ, Richardson K, et al. Effect of a GFOD2 variant on responses in total and LDL cholesterol in mexican subjects with hypercholesterolemia after soy protein and soluble fiber supplementation. Gene. 2013;532:211-5.
Guevara-Cruz M, Tovar AR, Larrieta E, Canizales-Quinteros S, Torres N. Increase in HDL-C concentration by a dietary portfolio with soy protein and soluble fiber is associated with the presence of the ABCA1R230C variant in hyperlipidemic mexican subjects. Mol Genet Metab. 2010;101:268-72.