2019, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2019; 22 (1)
Microdominios membranales bacterianos semejantes a balsas lipídicas
Guzmán-Flores JE, Georgellis D, Álvarez AF
Idioma: Español
Referencias bibliográficas: 60
Paginas: 1-10
Archivo PDF: 994.38 Kb.
RESUMEN
La capacidad de las membranas biológicas para compartimentar diversos procesos fisiológicos como la transducción
de señales, tráfico vesicular, entre otros, ha llevado al estudio de estructuras conocidas como balsas lipídicas o
microdominios de membrana. Estos microdominios se componen de proteínas y lípidos especializados, los cuales
han sido ampliamente descritos en una gran variedad de células eucariotas. Una característica de las balsas lipídicas
es el alto grado de empaquetamiento de sus componentes, lo que genera una menor fluidez con respecto al resto
de la membrana. La técnica más empleada para caracterizar estos microdominios, es la generación de membranas
resistentes a detergentes (
DRM-Detergent-Resistant Membranes), la cual aprovecha las características físico-químicas
de las balsas lipídicas, cuyos componentes estructurales son resistentes a la solubilización por detergentes. Las
proteínas que contienen un dominio conocido como SPFH (Stomatin, Prohibitin, Flotillin, HflK/C) son consideradas
como marcadores de balsas lipídicas y se identifican frecuentemente en preparaciones de DRM. Recientemente, la
amplia distribución de proteínas con dominios SPFH codificadas en cromosomas bacterianos, ha dirigido el enfoque al
estudio de estructuras similares a balsas lipídicas en las membranas bacterianas. En esta revisión se exponen algunos
avances recientes en la identificación y estudio de los microdominios de membrana bacterianos similares a balsas
lipídicas presentes en eucariontes.
REFERENCIAS (EN ESTE ARTÍCULO)
Alfalah, M., Wetzel, G., Fischer, I., Busche, R., Sterchi, E. E., Zimmer, K.-P., Sallman, H.-P., & Naim, H. Y. (2005). A Novel Type of Detergent-resistant Membranes May Contribute to an Early Protein Sorting Event in Epithelial Cells. Journal of Biological Chemistry, 280(52), 42636– 42643. https://doi.org/10.1074/JBC.M505924200
An, D., Na, C., Bielawski, J., Hannun, Y. A., & Kasper, D. L. (2011). Membrane sphingolipids as essential molecular signals for Bacteroides survival in the intestine. Proceedings of the National Academy of Sciences of the United States of America, 108 (Suppl 1), 4666–4671. https://doi.org/10.1073/pnas.1001501107
Babiychuk, E. B., & Draeger, A. (2006). Biochemical characterization of detergent-resistant membranes: a systematic approach. The Biochemical Journal, 397(3), 407–416. https://doi.org/10.1042/BJ20060056
Bach, J. N., & Bramkamp, M. (2013). Flotillins functionally organize the bacterial membrane. Molecular Microbiology, 88(6), 1205–1217. https://doi.org/10.1111/ mmi.12252
Bernal, P., Muñoz-Rojas, J., Hurtado, A., Ramos, J. L., & Segura, A. (2007). A Pseudomonas putida cardiolipin synthesis mutant exhibits increased sensitivity to drugs related to transport functionality. Environmental Microbiology, 9(5), 1135–1145. https://doi.org/10.1111/ j.1462-2920.2006.01236.x
Borner, G. H. H., Sherrier, D. J., Weimar, T., Michaelson, L. V, Hawkins, N. D., Macaskill, A., Napier, J. A., Beale, M. H., Lilley, K. S., & Dupree, P. (2005). Analysis of detergentresistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiology, 137(1), 104–116. https://doi.org/10.1104/pp.104.053041
Browman, D. T., Hoegg, M. B., & Robbins, S. M. (2007, August). The SPFH domain-containing proteins: more than lipid raft markers. Trends in Cell Biology, 17(8), 394-402. https://doi.org/10.1016/j.tcb.2007.06.005
Brown, D. A. (2006). Lipid Rafts, Detergent-Resistant Membranes, and Raft Targeting Signals. Physiology, 21(6), 430–439. https://doi.org/10.1152/physiol.00032.2006
Brown, D. A., & London, E. (1998). Structure and origin of ordered lipid domains in biological membranes. Journal of Membrane Biology, 164(2), 103-114. https://doi. org/10.1007/s002329900397
Brown, D. A., & Rose, J. K. (1992). Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell, 68(3), 533–544. https://doi.org/10.1016/0092-8674(92)90189-J
Carmona-Salazar, L., El Hafidi, M., Enríquez-Arredondo, C., Vázquez-Vázquez, C., González De La Vara, L. E., & Gavilanes-Ruiz, M. (2011). Isolation of detergentresistant membranes from plant photosynthetic and nonphotosynthetic tissues. Analytical Biochemistry, 417(2), 220–227. https://doi.org/10.1016/j.ab.2011.05.044
Clejan, S., Krulwich, T. A., Mondrus, K. R., & Seto-Young, D. (1986). Membrane lipid composition of obligately and facultatively alkalophilic strains of Bacillus spp. Journal of Bacteriology, 168(1), 334–340. https://doi. org/10.1128/jb.168.1.334-340.1986
Cronan, J. E. (2003). Bacterial Membrane Lipids: Where Do We Stand? Annual Review of Microbiology, 57(1), 203–224. https://doi.org/10.1146/annurev.micro.57.030502.090851
Daley, D. O., Rapp, M., Granseth, E., Melén, K., Drew, D., & von Heijne, G. (2005). Global topology analysis of the Escherichia coli inner membrane proteome. Science (New York, N.Y.), 308(5726), 1321–1323. https://doi. org/10.1126/science.1109730
Delaunay, J. L., Breton, M., Trugnan, G., & Maurice, M. (2008). Differential solubilization of inner plasma membrane leaflet components by Lubrol WX and Triton X-100. Biochimica et Biophysica Acta - Biomembranes, 1778(1), 105–112. https://doi.org/10.1016/j.bbamem.2007.09.017
Deol, S. S., Bond, P. J., Domene, C., & Sansom, M. S. P. (2004). Lipid-protein interactions of integral membrane proteins: A comparative simulation study. Biophysical Journal, 87(6), 3737–3749. https://doi.org/10.1529/ biophysj.104.048397
Fishov, I., & Woldringh, C. L. (1999). Visualization of membrane domains in Escherichia coli. Molecular Microbiology, 32(6), 1166–1172. https://doi.org/10.1046/ j.1365-2958.1999.01425.x
Frye, L. D., & Edidin, M. (1970). The Rapid Intermixing of Cell Surface Antigens After Formation of Mouse- Human Heterokaryons. Journal of Cell Science, 7(2), 319–335. Retrieved from http://www.ncbi.nlm.nih.gov/ pubmed/4098863
Gilleland, H. E., & Lyle, R. D. (1979). Chemical alterations in cell envelopes of polymyxin-resistant Pseudomonas aeruginosa isolates. Journal of Bacteriology, 138(3), 839–845. Retrieved from http://www.ncbi.nlm.nih.gov/ pubmed/6271731
Guzmán-Flores, J. E., Álvarez, A. F., Poggio, S., Gavilanes- Ruiz, M., & Georgellis, D. (2017). Isolation of detergentresistant membranes (DRMs) from Escherichia coli. Analytical Biochemistry, 518(1), 1–8. https://doi. org/10.1016/j.ab.2016.10.025
Hinderhofer, M., Walker, C. A., Friemel, A., Stuermer, C. A., Möller, H. M., & Reuter, A. (2009). Evolution of prokaryotic SPFH proteins. BMC Evolutionary Biology, 9(10), 1-18. https://doi.org/10.1186/1471-2148-9-10
Hutton, M. L., D’Costa, K., Rossiter, A. E., Wang, L., Turner, L., Steer, D. L., Masters, S. L., Croker, B. A., Kaparakis- Liaskos, M., & Ferrero, R. L. (2017). A Helicobacter pylori Homolog of Eukaryotic Flotillin Is Involved in Cholesterol Accumulation, Epithelial Cell Responses and Host Colonization. Frontiers in Cellular and Infection Microbiology, 7, 219. https://doi.org/10.3389/ fcimb.2017.00219
Kamio, Y., & Nikaido, H. (1976). Outer membrane of Salmonella typhimurium: accessibility of phospholipid head groups to phospholipase C and cyanogen bromide activated dextran in the external medium. Biochemistry, 15(12), 2561–2570. https://doi.org/10.1021/bi00657a012
Kawai, F., Shoda, M., Harashima, R., Sadaie, Y., Hara, H., & Matsumoto, K. (2004). Cardiolipin Domains in Bacillus subtilis Marburg Membranes. Journal of Bacteriology, 186(5), 1475–1483. https://doi.org/10.1128/ JB.186.5.1475-1483.2004
Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. . (2001). Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. Journal of Molecular Biology, 305(3), 567– 580. https://doi.org/10.1006/JMBI.2000.4315
LaRocca, T. J., Pathak, P., Chiantia, S., Toledo, A., Silvius, J. R., Benach, J. L., & London, E. (2013). Proving Lipid Rafts Exist: Membrane Domains in the Prokaryote Borrelia burgdorferi Have the Same Properties as Eukaryotic Lipid Rafts. PLoS Pathogens, 9(5), e1003353. https://doi.org/10.1371/journal.ppat.1003353
Lee, A. G. (2003). Lipid-protein interactions in biological membranes: A structural perspective. Biochimica et Biophysica Acta – Biomembranes, 1612(1), 1-40. https:// doi.org/10.1016/S0005-2736(03)00056-7
Lisanti, M. P., & Rodríguez-Boulan, E. (1990). Glycophospholipid membrane anchoring provides clues to the mechanism of protein sorting in polarized epithelial cells. Trends in Biochemical Sciences, 15(3), 113–118. https://doi.org/10.1016/0968-0004(90)90195-H
López, D., & Koch, G. (2017). Exploring functional membrane microdomains in bacteria: an overview. Current Opinion in Microbiology, 36, 76-84. https://doi.org/10.1016/J. MIB.2017.02.001
López, D., & Kolter, R. (2010). Functional microdomains in bacterial membranes. Genes and Development, 24(17), 1893–1902. https://doi.org/10.1101/gad.1945010
Luirink, J., Yu, Z., Wagner, S., & de Gier, J.-W. (2012). Biogenesis of inner membrane proteins in Escherichia coli. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1817(6), 965– 976. https://doi.org/10.1016/J.BBABIO.2011.12.006
Macdonald, J. L., & Pike, L. J. (2005). A simplified method for the preparation of detergent-free lipid rafts. Journal of Lipid Research, 46(5), 1061–1067. https://doi. org/10.1194/jlr.D400041-JLR200
Magee, A. I., & Parmryd, I. (2003). Detergent-resistant membranes and the protein composition of lipid rafts. Genome Biology, 4:234. https://doi.org/10.1186/gb- 2003-4-11-234
Maloney, E., Lun, S., Stankowska, D., Guo, H., Rajagoapalan, M., Bishai, W. R., & Madiraju, M. V. (2011). Alterations in phospholipid catabolism in Mycobacterium tuberculosis lysX mutant. Frontiers in Microbiology, 2(FEB), 1-19. https://doi.org/10.3389/fmicb.2011.00019
Mazzone, A., Tietz, P., Jefferson, J., Pagano, R., & LaRusso, N. F. (2006). Isolation and characterization of lipid microdomains from apical and basolateral plasma membranes of rat hepatocytes. Hepatology, 43(2), 287– 296. https://doi.org/10.1002/hep.21039
Mielich-Süss, B., Wagner, R. M., Mietrach, N., Hertlein, T., Marincola, G., Ohlsen, K., Geibel, S., & López, D. (2017). Flotillin scaffold activity contributes to type VII secretion system assembly in Staphylococcus aureus. PLoS Pathogens, 13(11), e1006728. https://doi.org/10.1371/ journal.ppat.1006728
Mileykovskaya, E., & Dowhan, W. (2000). Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. Journal of Bacteriology, 182(4), 1172–1175. https://doi.org/10.1128/JB.182.4.1172-1175.2000
Mongrand, S., Morel, J., Laroche, J., Claverol, S., Carde, J. P., Hartmann, M. A., Bonneu, M., Simon-Plas, F., Lessire, R., & Bessoule, J. J. (2004). Lipid rafts in higher plant cells: Purification and characterization of triton X-100- insoluble microdomains from tobacco plasma membrane. Journal of Biological Chemistry, 279(35), 36277–36286. https://doi.org/10.1074/jbc.M403440200
Nebl, T., Pestonjamasp, K. N., Leszyk, J. D., Crowley, J. L., Oh, S. W., & Luna, E. J. (2002). Proteomic analysis of a detergent-resistant membrane skeleton from neutrophil plasma membranes. The Journal of Biological Chemistry, 277(45), 43399–43409. https://doi.org/10.1074/jbc. M205386200
Neumann-Giesen, C., Falkenbach, B., Beicht, P., Claasen, S., Lüers, G., Stuermer, C. A. O., Herzog, V., & Tikkanen, R. (2004). Membrane and raft association of reggie-1/ flotillin-2: role of myristoylation, palmitoylation and oligomerization and induction of filopodia by overexpression. The Biochemical Journal, 378(2), 509– 518. https://doi.org/10.1042/BJ20031100
Otto, G. P., & Nichols, B. J. (2011). The roles of flotillin microdomains - endocytosis and beyond. Journal of Cell Science, 124(23), 3933–3940. https://doi.org/10.1242/ jcs.092015
Papanastasiou, M., Orfanoudaki, G., Koukaki, M., Kountourakis, N., Sardis, M. F., Aivaliotis, M., Karamanou, S., & Economou, A. (2013). The Escherichia coli peripheral inner membrane proteome. Molecular & Cellular Proteomics : MCP, 12(3), 599–610. https://doi. org/10.1074/mcp.M112.024711
Pike, L. J. (2006). Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. Journal of Lipid Research, 47(7), 1597–1598. https://doi. org/10.1194/jlr.E600002-JLR200
Renner, L. D., & Weibel, D. B. (2011). Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proceedings of the National Academy of Sciences of the United States of America, 108(15), 6264–6269. https://doi.org/10.1073/ pnas.1015757108
Rothman, J. E., & Kennedy, E. P. (1977). Symmetrical distribution of phospholipids in the membrane of Bacillus megaterium. Journal of Molecular Biology, 110(3), 603– 618. https://doi.org/10.1016/S0022-2836(77)80114-9
Schneider, J., Mielich-Süss, B., Böhme, R., & López, D. (2015). In vivo characterization of the scaffold activity of flotillin on the membrane kinase KinC of Bacillus subtilis. Microbiology, 161(9), 1871–1887. https://doi. org/10.1099/mic.0.000137
Schuck, S., Honsho, M., Ekroos, K., Shevchenko, A., & Simons, K. (2003). Resistance of cell membranes to different detergents. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 5795–5800. https://doi.org/10.1073/pnas.0631579100
Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology, 2(5), a000414. https://doi.org/10.1101/ cshperspect.a000414
Simons, K., & Ikonen, E. (1997). Functional rafts in cell membranes. Nature, 387(6633), 569–572. https://doi. org/10.1038/42408
Simons, K., & Van Meer, G. (1988). Lipid sorting in epithelial cells. Biochemistry, 27(17), 6197–6202. https://doi. org/10.1021/bi00417a001
Singer, S. J. J., & Nicolson, G. L. L. (1972). The fluid mosaic model of the structure of cell membranes. Science, 175(4023), 720–731. https://doi.org/10.1126/ science.175.4023.720
Siontorou, C., Nikoleli, G.-P., Nikolelis, D., & Karapetis, S. (2017). Artificial Lipid Membranes: Past, Present, and Future. Membranes, 7(3), 38. https://doi.org/10.3390/ membranes7030038
Sohlenkamp, C., & Geiger, O. (2016). Bacterial membrane lipids: Diversity in structures and pathways. (F. Narberhaus, Ed.), FEMS Microbiology Reviews. Oxford University Press. https://doi.org/10.1093/femsre/fuv008
Solís, G. P., Hoegg, M., Munderloh, C., Schrock, Y., Malaga- Trillo, E., Rivera-Milla, E., & Stuermer, C. A. O. (2007). Reggie/flotillin proteins are organized into stable tetramers in membrane microdomains. The Biochemical Journal, 403(2), 313–322. https://doi.org/10.1042/BJ20061686
Somani, V. K., Aggarwal, S., Singh, D., Prasad, T., & Bhatnagar, R. (2016). Identification of Novel Raft Marker Protein, FlotP in Bacillus anthracis. Frontiers in Microbiology, 7, 169. https://doi.org/10.3389/fmicb.2016.00169
Stoops, E. H., & Caplan, M. J. (2014). Trafficking to the Apical and Basolateral Membranes in Polarized Epithelial Cells. Journal of the American Society of Nephrology, 25(7), 1375–1386. https://doi.org/10.1681/ASN.2013080883
Tavernarakis, N., Driscoll, M., & Kyrpides, N. C. (1999). The SPFH domain: implicated in regulating targeted protein turnover in stomatins and other membrane-associated proteins. Trends in Biochemical Sciences, 24(11), 425– 427. https://doi.org/10.1016/S0968-0004(99)01467-X
Toledo, A., Pérez, A., Coleman, J. L., & Benach, J. L. (2015). The lipid raft proteome of Borrelia burgdorferi. Proteomics, 15(21), 3662–3675. https://doi.org/10.1002/ pmic.201500093
van Meer, G., Voelker, D. R., & Feigenson, G. W. (2008). Membrane lipids: where they are and how they behave. Nature Reviews Molecular Cell Biology, 9(2), 112–124. https://doi.org/10.1038/nrm2330
Williamson, R., Thompson, A. J., Abu, M., Hye, A., Usardi, A., Lynham, S., Anderton, B. H., & Hanger, D. P. (2010). Isolation of detergent resistant microdomains from cultured neurons: detergent dependent alterations in protein composition. BMC Neuroscience, 11, 120. https:// doi.org/10.1186/1471-2202-11-120.