2019, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2019; 22 (1)
Papel de las hormonas vegetales en la regulación de la autofagia en plantas
Porta H, Jiménez-Nopala G
Idioma: Español
Referencias bibliográficas: 56
Paginas: 1-11
Archivo PDF: 829.41 Kb.
RESUMEN
Las hormonas vegetales son moléculas señalizadoras que se localizan en los diferentes tejidos de una planta y en
cantidades específicas de acuerdo al proceso que regulan. Los cambios en la concentración y distribución de las hormonas
vegetales modulan el desarrollo y las respuestas al estrés biótico y abiótico.
La autofagia, que significa autodigestión, es un mecanismo que degrada los componentes dañados o tóxicos que surgen
del metabolismo, con la finalidad de reciclarlos y mantener la salud de la célula. En este proceso se forman vesículas
de doble membrana llamadas autofagosomas, las cuales encierran la carga dañada o no deseada, que posteriormente se
deposita para su degradación en la vacuola de donde la célula recupera aminoácidos, lípidos y proteínas. Se ha observado
una confluencia entre las hormonas vegetales y la autofagia durante el desarrollo y el crecimiento, la senescencia y la
muerte celular programada.
En esta revisión repasamos los avances en la comprensión del papel de las hormonas vegetales involucradas en la
modulación de la autofagia en las plantas.
REFERENCIAS (EN ESTE ARTÍCULO)
Avin-Wittenberg, T., Hoing, A. & Galili, G., (2012). Variations on a Theme: Plant Autophagy in Comparison to Yeast and Mammals. Protoplasma, 249 (2), 285–299. DOI:10.1007/s00709-011- 0296-z.
Bassham, D. C., Laporte, M., Marty, F., Moriyasu, Y., Ohsumi, Y., Olsen, L. J., & Yoshimoto, K. (2006). Autophagy in development and stress responses of plants. Autophagy, 2-11. DOI.org/10.4161/auto.2092.
Bögre, L., Henriques, R., & Magyar, Z. (2013). TOR Tour to Auxin. The EMBO Journal, 32(8), 1069–1071. DOI:10.1038/ emboj.2013.69. Figura
Bozhkov, P. V., Filonova, L. H., & Suárez, M. F. (2005). Programmed Cell Death in Plant Embryogenesis. Current Topics in Developmental Biology, 135–179. DOI:10.1016/s0070- 2153(05)67004-4.
Buchanan, B. B., Jones, R. L., & Gruissem, W. (2015). Biochemistry & molecular biology of plants. American Society of Plant Biologists. Wiley, New York.
Chung, T., Suttangkakul, A., & Vierstra, R. D. (2009). The ATG Autophagic Conjugation System in Maize: ATG Transcripts and Abundance of the ATG8-Lipid Adduct Are Regulated by Development and Nutrient Availability. Plant Physiology, 149, 220–234. DOI:10.1104/pp.108.126714.
Cassab, G., Eapen, D., & Campos, M. E. (2013). Root Hydrotropism: An Update. American Journal of Botany, 100(1), 2012, 14–24. DOI:10.3732/ajb.1200306.
Dobrenel, T., Caldana, C., Hanson, J., Robaglia, C., Vincentz, M., Veit, B., & Meyer, C. (2016). TOR Signaling and Nutrient Sensing. Annual Review of Plant Biology, 67(1), 261–285., DOI:10.1146/annurev-arplant-043014-114648.
Finkelstein, R. R. (2010). The Role of Hormones during Seed Development and Germination. Plant Hormones, 549–573. DOI:10.1007/978-1-4020-2686-7_24.
Fujiki, Y., Yoshimoto, K., & Ohsumi, Y. (2007). An Arabidopsis Homolog of Yeast ATG6/VPS30 Is Essential for Pollen Germination. Plant Physiology, 143, 1132–1139. DOI:10.1104/ pp.106.093864.
Hayward, A. P., Tsao, J., & Dinesh-Kumar, S. (2009). Autophagy and plant innate immunity: Defense through degradation. Seminars in Cell & Developmental Biology, 20, 1041–1047. DOI:10.1016/j.semcdb.2009.04.012.
Inoue, Y., Suzuki, T., Hattori, M., Yoshimoto, K., Ohsumi, Y., & Moriyasu, Y. (2006). AtATG Genes, Homologs of Yeast Autophagy Genes, are Involved in Constitutive Autophagy in Arabidopsis Root Tip Cells. Plant and Cell Physiology, 47, 1641–1652. DOI:10.1093/pcp/pcl031.
Iqbal, N., Khan, N. A., Ferrante, A., Trivellini, A., Francini, A., & Khan, M. I. R. (2017). Ethylene Role in Plant Growth, Development and Senescence: Interaction with Other Phytohormones. Frontiers in Plant Science, 8. DOI:10.3389/ fpls.2017.00475.
Izumi, M., Hidema, J., Makino, A., & Ishida, H. (2013a). Autophagy Contributes to Nighttime Energy Availability for Growth in Arabidopsis. Plant Physiology, 161, 1682–1693. DOI:10.1104/ pp.113.215632.
Izumi, M., Hidema, J., & Ishida, H. (2013b). Deficiency of autophagy leads to significant changes of metabolic profiles in Arabidopsis. Plant Signaling & Behavior, 8. DOI:10.4161/psb.25023.
Jiménez-Nopala, G., Salgado-Escobar, A. E., Cevallos-Porta, D., Cárdenas, L., Sepúlveda-Jiménez, G., Cassab, G., & Porta, H. (2018). Autophagy mediates hydrotropic response in Arabidopsis thaliana roots. Plant Science, 272, 1–13. DOI:10.1016/j.plantsci.2018.03.026.
Jiménez, V. M. (2005). Involvement of Plant Hormones and Plant Growth Regulators on in vitro Somatic Embryogenesis. Plant Growth Regulation, 47, 91–110. DOI:10.1007/s10725-005- 3478-x.
Jones, R. L., Ougham, H., Thomas, H., & Waaland, S. (2013). The molecular life of plants. Wiley-Blackwell.
Kurusu, T., Koyano, T., Kitahata, N., Kojima, M., Hanamata, S., Sakakibara, H., & Kuchitsu, K. (2017). Autophagy-mediated regulation of phytohormone metabolism during rice anther development. Plant Signaling & Behavior, 12. DOI:10.10 80/15592324.2017.1365211.
Kwon, S. I., Cho, H. J., Jung, J. H., Yoshimoto, K., Shirasu, K., & Park, O. K. (2010). The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis. The Plant Journal, 64, 151-164. DOI:10.1111/ j.1365-313x.2010.04315.x.
Lai, Z., Wang, F., Zheng, Z., Fan, B., & Chen, Z. (2011). A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. The Plant Journal, 66, 953–968. DOI:10.1111/ j.1365-313x.2011.04553.x.
Li, F., Chung, T., & Vierstra, R. D. (2014). AUTOPHAGYRELATED11 Plays a Critical Role in General Autophagy- and Senescence-Induced Mitophagy in Arabidopsis. The Plant Cell, 26, 788–807. DOI:10.1105/tpc.113.120014.
Liu, Y., Xoing, Y., & Bassham, D. (2009). Autophagy Is Required for Tolerance of Drought and Salt Stress in Plants. Autophagy, 5(7), 954–963., DOI:10.4161/auto.5.7.9290.
Marshall, R. S., & Vierstra, R. D. (2018). Autophagy: The Master of Bulk and Selective Recycling. Annual Review of Plant Biology, 69, 173–208. DOI:10.1146/annurev-arplant-042817-040606.
Nakayama, M,. Kaneko, Y., Miyazawa, Y., Fujii, N., Higashitani, N., Wada, S., Ishida, H., Yoshimoto, K., Shirasu, K., Yamada, K., Nishimura, M., & Takahashi, H., (2012). A Possible Involvement of Autophagy in Amyloplast Degradation in Columella Cells during Hydrotropic Response of Arabidopsis Roots. Planta, 236(4), 999–1012. DOI:10.1007/s00425-012-1655-5.
Paparelli, E., Parlanti, S., Gonzali, S., Novi, G., Mariotti, L., Ceccarelli, N., van Dongen, J. T., Kölling, K., Zeeman, S. C., & Perata, P. (2013). Nighttime Sugar Starvation Orchestrates Gibberellin Biosynthesis and Plant Growth in Arabidopsis. The Plant Cell, 25, 3760–3769. DOI:10.1105/tpc.113.115519.
Parzych, K. R., & Klionsky, D. J. (2014). An Overview of Autophagy: Morphology, Mechanism, and Regulation. Antioxidants & Redox Signaling, 20, 460–473. DOI:10.1089/ars.2013.5371.
Pei, D., Zhang, W., Sun, H., Wei, X., Yue, J., & Wang, H. (2014). Identification of autophagy-related genes ATG4 and ATG8 from wheat (Triticum aestivum L.) and profiling of their expression patterns responding to biotic and abiotic stresses. Plant Cell Reports, 33, 1697–1710. DOI:10.1007/s00299-014-1648-x.
Rose, T. L., Bonneau, L., Der, C., Marty-Mazars, D., & Marty, F. (2006). Starvation-induced expression of autophagyrelated genes in Arabidopsis. Biology of the Cell, 98, 53–67. DOI:10.1042/bc20040516.
Santner, A., & Estelle, M. (2009). Recent advances and emerging trends in plant hormone signalling. Nature, 459, 1071–1078. DOI:10.1038/nature08122.
Schepetilnikov, M., Dimitrova, M., Mancera-Martínez, E., Geldreich, A., Keller, M. & Ryabova, L. (2013). TOR and S6K1 Promote Translation Reinitiation of UORF-Containing MRNAs via Phosphorylation of eIF3h. The EMBO Journal, 32(8), 1087– 1102. DOI:10.1038/emboj.2013.61.
Shibuya, K., Niki, T. & Ichimura., K. (2013). Pollination induces autophagy in petunia petals via ethylene. Journal of Experimental Botany, 64(4),1111–1120. DOI.org/10.1093/jxb/ers395.
hkolnik, D., Krieger, G., Nuriel, R., & Fromm, H. (2016). Hydrotropism: Root Bending Does Not Require Auxin Redistribution. Molecular Plant, 9, 757–759. DOI:10.1016/j. molp.2016.02.001.
Slavikova, S., Ufaz, S., Avin-Wittenberg, T., Levanony, H., & Galili, G. (2008). An autophagy-associated Atg8 protein is involved in the responses of Arabidopsis seedlings to hormonal controls and abiotic stresses. Journal of Experimental Botany, 59, 4029– 4043. DOI:10.1093/jxb/ern244.
Soto-Burgos, J., & Bassham, D. C. (2017). SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana. Plos One, 12(8), e0182591. DOI:10.1371/journal. pone.0182591.
van Dam, T. J. P., Zwartkruis, F. J. T., Bos, J. L., & Snel, B. (2011). Evolution of the TOR Pathway. Journal of Molecular Evolution, 73, 209–220. DOI:10.1007/s00239-011-9469-9.
van Doorn, W. G., & Woltering, E. J. (2005). Many ways to exit? Cell death categories in plants. Trends in Plant Science, 10, 117–122. DOI:10.1016/j.tplants.2005.01.006.
Wada, S., Ishida, H., Izumi, M., Yoshimoto, K., Ohsumi, Y., Mae, T., & Makino. A. (2009). Autophagy Plays a Role in Chloroplast Degradation during Senescence in Individually Darkened Leaves. Plant Physiology, 149, 885–893. DOI:10.1104/ pp.108.130013.
Wang, P., Sun, X., Jia, X., Wang, N., Gong, X., & Ma, F. (2016). Characterization of an Autophagy-Related Gene MdATG8i from Apple. Frontiers in Plant Science, 7(720), 1-16. DOI:10.3389/ fpls.2016.00720.
Wang, Y. & Liu, Y. (2013). Autophagic Degradation of Leaf Starch in Plants. Autophagy, 9. 1247–1248. DOI:10.4161/auto.25176.
Wang, Y., Cai, S., Yin, L., Shi, K., Xia, X., & Zhou, Y., (2015). Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy. Autophagy, 11, 2033–2047. DOI:10.1080/15548627.2015.1098798.
Wei, Y., Liu, W., Hu, W., Liu, G., Wu, C., Liu, W., Zeng, H., He, C., & Shi, H. (2017). Genome-wide analysis of autophagyrelated genes in banana highlights MaATG8s in cell death and autophagy in immune response to Fusarium wilt. Plant Cell Reports, 36, 1237–1250. DOI:10.1007/s00299-017-2149-5.
Weijers, D. & Wagner, D. (2016). Transcriptional Responses to the Auxin Hormone. Annual Review of Plant Biology, 67(1), 539– 574. DOI:10.1146/annurev-arplant-043015-112122.
Xia, K., Liu, T., Ouyang, J., Wang, R., Fan, T., & Zhang, M. (2011). Genome-Wide Identification, Classification, and Expression Analysis of Autophagy-Associated Gene Homologues in Rice (Oryza sativa L.). DNA Research, 18, 363–377. DOI:10.1093/ dnares/dsr024.
Xiong, Y., Contento, A. L., Nguyen, P. Q., & Bassham, D. C. (2006). Degradation of Oxidized Proteins by Autophagy during Oxidative Stress in Arabidopsis. Plant Physiology, 143, 291– 299. DOI:10.1104/pp.106.092106.
Xiong, Y., Contento, A. L., & Bassham, D. C. (2005). AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. The Plant Journal, 42, 535–546. DOI:10.1111/j.1365-313x.2005.02397.x.
Yang, X., & Bassham, D. C. (2015). New Insight into the Mechanism and Function of Autophagy in Plant Cells. International Review of Cell and Molecular Biology, 1–40. DOI:10.1016/ bs.ircmb.2015.07.005.
Yang, Z. & Klionsky, D.J. (2009). An Overview of the Molecular Mechanism of Autophagy. In: Levine, B., Yoshimori, T., Deretic, V. (eds) Autophagy in Infection and Immunity. Current Topics in Microbiology and Immunology, Vol. 335. Springer, Berlin, Heidelberg. DOI:10.1007/978-3-642-00302-8_1
Yang, Z., & Klionsky, D.J. (2010). Eaten alive: a history of macroautophagy. Nature Cell Biology, 12, 814-822. DOI:10.1038/ncb0910-814
Yano, K., Suzuki, T., & Moriyasu, Y. (2007). Constitutive Autophagy in Plant Root Cells. Autophagy, 3, 360–362. DOI:10.4161/ auto.4158.
Yano, K., Yanagisawa, T., Mukae, K., Niwa, Y., Inoue, Y., & Moriyasu, Y. (2015). Dissection of autophagy in tobacco BY-2 cells under sucrose starvation conditions using the vacuolar H -ATPase inhibitor concanamycin A and the autophagy-related protein Atg8. Plant Signaling & Behavior, 10. ODI:10.1080/15 592324.2015.1082699.
Yoshimoto, K., Hanaoka, H., Sato, S., Kato, T., Tabata, S., Noda, T. & Ohsumi, Y. (2004). Processing of ATG8s, Ubiquitin-Like Proteins, and Their Deconjugation by ATG4s Are Essential for Plant Autophagy. The Plant Cell Online. 16(11), 2967–2983. DOI:10.1105/tpc.104.025395.
Yoshimoto, K., Jikumaru, Y., Kamiya, Y., Kusano, M., Consonni, C., Panstruga, R., & Ohsumi, Y., Shirasu. K. (2009). Autophagy Negatively Regulates Cell Death by Controlling NPR1- Dependent Salicylic Acid Signaling during Senescence and the Innate Immune Response in Arabidopsis. The Plant Cell Online, 21, 2914–2927. DOI:10.1105/tpc.109.068635.
Yoshimoto, K. (2012). Beginning to understand autophagy, an intracellular self-degradation system in plants. Plant Cell Physiol 53(8): 1355-1365. DOI:10.1093/pcp/pcs099
Zhu, T., Zou, L., Li, Y., Yao, X., Xu, F., Deng, X., Zhang, D., & Lin H. (2018). Mitochondrial alternative oxidase-dependent autophagy involved in ethylene-mediated drought tolerance in Solanum lycopersicum. Plant Biotechnology Journal. DOI:10.1111/ pbi.12939.
Zhuang, X., Chung, K., Cui, Y., Lin, W., Gao, C., Kang, B. & Jiang, L. (2017). ATG9 Regulates Autophagosome Progression from the Endoplasmic Reticulum In Arabidopsis. Proceedings of the National Academy of Sciences, 114(3), DOI:10.1073/ pnas.1616299114.