2019, Número 1
Siguiente >>
TIP Rev Esp Cienc Quim Biol 2019; 22 (1)
Efecto del quitosano en el control de Alternaria sp. en plantas de jitomate en invernadero
Rodríguez-Guzmán CA, González-Estrada RR, Bautista-Baños S, Gutiérrez-Martínez P
Idioma: Español
Referencias bibliográficas: 38
Paginas: 1-7
Archivo PDF: 535.19 Kb.
RESUMEN
México es el principal exportador de jitomate a nivel mundial. El uso de invernaderos favorece la protección y producción
de hortalizas, sin embargo, las plántulas de jitomate son sensibles al ataque de hongos necrotróficos como
Alternaria sp. y el uso de fungicidas para el control de enfermedades aunque efectivo, daña al medio ambiente y favorece
la aparición de cepas resistentes, situación que impulsa a buscar alternativas seguras para el uso de fungicidas
sintéticos. El quitosano posee actividad antifúngica además de la capacidad de activar mecanismos de defensa en las
plantas. En este estudio, a las plantas de jitomate se les aplicó quitosano a diferentes concentraciones. Se determinó el
porcentaje de daño foliar, germinación de esporas, inducción de peróxido de hidrógeno y actividad enzimática (peroxidasa
y polifenoloxidasa). Se obtuvo una reducción estadísticamente significativa en el daño foliar y la germinación
de esporas en plantas tratadas con 0.01% de quitosano (hasta un 80%) en comparación con el control. La producción
de H2O2 y la actividad enzimática fue inducida en plantas tratadas. Por lo tanto, la aplicación de quitosano puede ser
una alternativa viable para el control de la pudrición causada por
Alternaria sp. en jitomate.
REFERENCIAS (EN ESTE ARTÍCULO)
Abramoff, M. D., Magalhaes, P. J., & Ram, S. J. (2004). Image processing with Image. J. Biophotonics International., 11, 36–42.
Agrawal, G. K., Rakwal, R., Tamogami, S., Yonekura, M., Kubo, A., & Saji, H. (2002). Chitosan activates defense/ stress response (s) in the leaves of Oryza sativa seedlings. Plant Physiology and Biochemistry, 40, 1061–1069. https:// doi.org/10.1016/S0981-9428(02)01471-7.
Arah, I. K., Kumah, E. K., Anku, E. K., & Amaglo, H. (2015). An overview of post-harvest losses in tomato production in Africa: causes and possible prevention strategies. Journal of Biology, Agriculture and Healthcare, 5, 78–88.
Barnett, H. L., & Hunter, B. B. (1998). Illustrated genera of imperfect fungi. Aps. Symp. Ser. (APS Press). https://doi. org/10.1007/s00299-007-0368-x.
Bautista-Baños, S., Hernández-Lauzardo, A. N., Velázquez-Del Valle, M. G., Hernández-López, M., Barka, E. A., Bosquez- Molina, E., & Wilson, C. L. (2006). Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Protection, 25, 108–118.
Bonner, M. R., & Alavanja, M. C. R. (2017). Pesticides, human health, and food security. Food and Energy Security, 6, 89–93. https://doi.org/10.1002/fes3.112.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemestry, 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Carvalho, F. P. (2017). Pesticides, environment, and food safety. Food and Energy Security, 6, 48–60. https://doi. org/10.1002/fes3.108.
Chance, B., & Maehly, A. C. (1955). Assay of catalases and peroxidases. Methods in Enzimology, 2, 764-775. https:// doi.org/10.1016/S0076-6879(55)02300-8.
Chen, C., Belanger, R. R., Benhamou, N., & Paulitz, T. C. (2000). Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiological and Molecular Plant Pathology, 56(1), 13-23. https://doi.org/10.1006/ pmpp.1999.0243.
Chen, J., Zou, X., Liu, Q., Wang, F., Feng, W., & Wan, N. (2014). Combination effect of chitosan and methyl jasmonate on controlling Alternaria alternata and enhancing activity of cherry tomato fruit defense mechanisms. Crop Protection, 56, 31–36. https://doi.org/10.1016/j.cropro.2013.10.007.
El Ghaouth, A., Arul, J., Grenier, J., & Asselin, A. (1992). Antifungal activity of chitosan on two postharvest pathogens of strawberry fruits. Phytopathology, 82, 398–402.
Elsabee, M. Z., & Abdou, E. S. (2013). Chitosan based edible films and coatings: A review. Material Science and Engineering: C, 33, 1819–1841. https://doi.org/10.1016/j. msec.2013.01.010.
Fagundes, C., Pérez-Gago, M. B., Monteiro, A. R., & Palou, L. (2013). Antifungal activity of food additives in vitro and as ingredients of hydroxypropyl methylcellulose-lipid edible coatings against Botrytis cinerea and Alternaria alternata on cherry tomato fruit. International Journal of Food Microbiology, 166, 391–398. https://doi. org/10.1016/j.ijfoodmicro.2013.08.001,
INIFAP. Instituto Nacional de Investigaciones Forestales, A. y P. (2008). Jitomate. http://cesix.inifap.gob.mx/guias/ JITOMATE.pdf. Fecha de acceso: 3/04/2018.
Jayaraj, J., & Punja, Z. K. (2007). Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens. Plant Cell Reports, 26, 1539–1546.
Jia, H., Zhao, P., Wang, B., Tariq, P., Zhao, F., Zhao, M., & Fang, J. (2016). Overexpression of polyphenol oxidase gene in strawberry fruit delays the fungus infection process. Plant Molecular Biology Reporter, 34(3), 592-606. doi: 10.1007/ s11105-015-0946-y.
Jiang, Y. M. (1999). Purification and some properties of polyphenol oxidase of longan fruit. Food Chemistry, 66, 75-79.
Kauss, H., Jeblick, W., Domard, A., & Siegrist, J. (1997). Partial acetylation of chitosan and a conditioning period are essential for elicitation of H2O2 in surface-abraded tissues from various plants. Advances in Chitin Sciences, 2, 94–101.
Kiirika, L. M., Stahl, F., & Wydra, K. (2013). Phenotypic and molecular characterization of resistance induction by single and combined application of chitosan and silicon in tomato against Ralstonia solanacearum. Physiological and Molecular Plant Pathology, 81, 1–12.
Kong, M., Chen, X. G., Xing, K., & Park, H. J. (2010). Antimicrobial properties of chitosan and mode of action: a state of the art review. International Journal of Food Microbiology, 144, 51–63. https://doi.org/10.1016/j. ijfoodmicro.2010.09.012.
Lehmann, S., Serrano, M., L’Haridon, F., Tjamos, S. E., & Metraux, J. P. (2015). Reactive oxygen species and plant resistance to fungal pathogens. Phytochemistry, 112, 54-62. https://doi.org/10.1016/j.phytochem.2014.08.027.
López-Mora, L. I., Gutiérrez-Martínez, P., Bautista-Baños, S., Jiménez-García, L. F., & Zavaleta-Mancera, H. A. (2013). Evaluation of antifungal activity of chitosan in Alternaria alternata and in the quality of’Tommy Atkins’ mango during storage. Revista Chapingo. Serie Horticultura, 19(3), 315-331.
McGovern, R. J. (2015). Management of tomato diseases caused by Fusarium oxysporum. Crop Protection, 73, 78–92. https://doi.org/10.1016/j.cropro.2015.02.021.
Mithöfer, A., & Maffei, M. E. (2016). General mechanisms of plant defense and plant toxins. Plant Toxins, 3-22. https:// doi.org/10.1007/978-94-007-6464-4_21.
Mohammadi, M., & Kazemi, H. (2002). Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Science, 162, 491–498. https://doi.org/10.1016/S0168- 9452(01)00538-6.
Neill, S. J., Desikan, R., Clarke, A., Hurst, R. D., & Hancock, J. T. (2002). Hydrogen peroxide and nitric oxide as signalling molecules in plants. Journal of Experimental Botany, 53, 1237–1247.
Peng, M., & Kuc, J. (1992). Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology, 82, 696–699.
Rodríguez-Pedroso, A. T., Ramírez-Arrebato, M. A., Rivero- González, D., Bosquez-Molina, E., Barrera-Necha, L. L., & Bautista-Baños, S. (2009). Propiedades químicoestructurales y actividad biológica de la quitosana en microorganismos fitopatógenos. Revista Chapingo Serie Horticultura, 15, 307–317.
Romanazzi G., Sanzani, S. M., Bi, Y., Tian, S., Gutiérrez- Martínez, P., & Alkan, N. (2016). Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biology and Technology, 122, 82–94. https:// doi.org/10.1016/j.postharvbio.2016.08.003.
SAGARPA. Secretaría de agricultura, ganadería, desarrollo rural, pesca y alimentación. (2017).http://www.sagarpa.gob. mx/desarrolloRural/AsistenciaCapacitacion/Documents/ red del conocimiento/manuales pesa/invernaderos.pdf. Fecha de acceso: 4/04/2018.
Sathiyabama, M., Akila, G., & Charles, R. E. (2014). Chitosaninduced defence responses in tomato plants against early blight disease caused by Alternaria solani (Ellis and Martin) Sorauer. Archives of Phytopathology and Plant Protection, 47, 1963–1973. https://doi.org/10.1080/0323 5408.2013.863497.
Singh, S. (2016). Enhancing phytochemical levels, enzymatic and antioxidant activity of spinach leaves by chitosan treatment and an insight into the metabolic pathway using DART-MS technique. Food Chemistry, 199, 176-184. https://doi.org/10.1016/j.foodchem.2015.11.127.
Soliva, R. C., Elez, P., Sebastián, M., & Martı́n, O. (2000). Evaluation of browning effect on avocado purée preserved by combined methods. Innovative Food Science and Emerging Technologies, 1, 261–268. https://doi. org/10.1016/S1466-8564(00)00033-3.
Thordal Christensen, H., Zhang, Z., Wei, Y., & Collinge, D. B. (1997). Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction. The Plant Journal, 11, 1187–1194. https://doi.org/10.1046/ j.1365-313X.1997.11061187.x.
Yao, H., Tian, S. & Wang, Y. (2004). Sodium bicarbonate enhances biocontrol efficacy of yeasts on fungal spoilage of pears. International Journal of Food Microbiology, 93, 297-304. https://doi.org/10.1016/j. ijfoodmicro.2003.11.011.
Yin, L., Zou, Y., Ke, X., Liang, D., Du, X., Zhao, Y. & Ma, F. (2013). Phenolic responses of resistant and susceptible Malus plants induced by Diplocarpon mali. Scientia Horticulturae, 164, 17–23. https://doi.org/10.1016/j. scienta.2013.08.037.
Zaninotto, F., La Camera, S., Polverari, A., & Delledonne, M. (2006). Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response. Plant Physiology, 141, 379–383.