2018, Número 6
<< Anterior
Rev Mex Neuroci 2018; 19 (6)
Evidencia proveniente de estudios en modelos animales acerca de los efectos del ejercicio y el enriquecimiento ambiental sobre la neurogénesis en el adulto
Montero-Herrera B
Idioma: Español
Referencias bibliográficas: 60
Paginas: 53-69
Archivo PDF: 248.93 Kb.
RESUMEN
Referirse a neurogénesis hace parecer que sea un tema muy reciente en el campo de la ciencia, pero la realidad es que
se está investigando aproximadamente desde 1962, año en el que apareció el primer experimento que usaba modelos
animales para medir el incremento en la cantidad de neuronas en ciertas zonas del cerebro. Desde ese momento se han
desarrollado muchas investigaciones que buscan descubrir cómo se lleva a cabo este proceso y qué factores lo modulan.
Esta revisión se enfoca en el ejercicio (aeróbico y/o contra resistencia) y el enriquecimiento ambiental (EA) como dos de
las condiciones principales que se han asociado con la neurogénesis en el adulto. Los resultados de los artículos demuestran
que tanto el ejercicio como el EA promueven la formación de nuevas neuronas, aunque el ejercicio produce mayores
efectos.
REFERENCIAS (EN ESTE ARTÍCULO)
Álvarez C, Olivo J, Robinson O, Quintero J, Carrasco V, Ramírez R, et al. Efectos de una sesión de ejercicio aeróbico en la presión arterial de niños, adolescentes y adultos sanos. Rev Med Chile. 2013;141(2):1363-70.
Olmedialla A, Ortega E, Candel N. Ansiedad, depresión y práctica de ejercicio físico en estudiantes universitarias. Apunts Med Esport. 2010; 45(167):175-80.
Penedo F, Dahn J. Exercise and well-being: a review of mental and physical health benefits associated with physical activity. Curr Opin Psychiatry. 2005;18(2):189-93.
Rincón M. Efecto del ejercicio en la variabilidad de la frecuencia cardíaca. Revista Colombiana de Medicina Física y Rehabilitación. 2010;20(1):24-32. Disponible en: http://www.revistacmfr.org/index.php/rcmfr/article/view/29/26
Szabo A. Acute psychological benefits of exercise: reconsideration of the placebo effect. J Ment Health. 2013;22(5):449-55.
Fiuza C, Garatachea N, Berger N, Lucia A. Exercise is the real polypill. Physiology (Bethesda). 2013;28(5):330-58.
Déry N, Goldstein A, Becker S. A role for adult hippocampal neurogenesis at multiple time scales: A study of recent and remote memory in humans. Behav Neurosci. 2015;129(4):435-49.
Ming GL, Song H. Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci. 2005;28:223-50.
Ming GL, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 2011;70(4):687-702.
Rosenzweig M, Bennett E, Hebert M, Morimoto H. Social grouping cannot account for cerebral effects of enriched environments. Brain Res. 1978;153(3):563-76.
Van Praag H, Kempermann G, Gage F. Neural consequences of environmental enrichment. Nat Rev Neurosci. 2000;1(3):191-8.
Welch B, Brown D, Welch A, Lin D. Isolation, restrictive confinement or crowding of rats for one year. I. Weight, nucleic acids and protein of brain regions. Brain Res. 1974;75(1):71-84.
Gould E, Tanapat P, Hastings N, Shors T. Neurogenesis in adulthood: a possible role in learning. Trends Cogn Sci. 1999;3(5):186-92.
Greenough W, Cohen N, Juraska J. New neurons in old brains: learning to survive? Nat Neurosci. 1999;2(3):203.
Spalding K, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153(6):1219-27.
Eriksson P, Perfilieva E, Björk T, Alborn A, Nordborg C, Peterson D, et al. Neurogenesis in the adult human hippocampus. Nature Med. 1998; 4(11):1313-7.
Zhao C, Deng W, Gage F. Mechanisms and functional implications of adult neurogenesis. Cell. 2008;132(4):645-60.
Benito J, Simón C, eds. Educar para sanar: ciencia y conciencia del nuevo paradigma educativo. 1.a ed. EE.UU.: Bubok Publishing; 2015. Disponible en: https://books.google.co.cr/books?id=7XrYCwAAQBAJ&pg= PT17&dq=proceso+de+neuroplasticidad&hl=es&sa=X&redir_esc=y#- v=onepage&q=proceso%20de%20neuroplasticidad&f=false
Rosenzweig M, Bennett E. Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav Brain Res. 1996;78(1):57-65.
Gage F. Neurogenesis in the adult brain. J Neurosci. 2002;22(3):612-3. Disponible en: http://www.jneurosci.org/content/jneuro/22/3/612.full.pdf
Gage F, Van Praag H. Sección 1: Neurogenesis in adult brain. En: Davis K, Charney D, Coyle J, Nemeroff C, editores. Neuropsychopharmacology. 5.a ed. Filadelfia: Lippincott Williams & Wilkins; 2002. p. 109-17. Disponible en: http://www.acnp.org/publications/neuro5thgeneration.aspx
Sirerol M, García J. Células madre y neurogénesis en el cerebro adulto. En: Lazo P, Sánchez I, editores. Medicina regenerativa y células madre. 1.a ed. Madrid: Arbor; 2010. p. 79-104. Disponible en: https://books. google.co.cr/books?id=XDOZWsASVBkC&printsec=frontcover&hl=es#- v=onepage&q&f=false
Ramírez G, Benítez G, Kempermann G. Formación de neuronas nuevas en el hipocampo adulto: neurogénesis. Salud Mental. 2007;3(3):12-9.
Altman J. Are new neurons formed in the brains of adult mammals? Sciences. 1962;135(3509):1127-8.
Altman J, Das G. Post-natal origin of microneurones in the rat brain. Nature. 1965;207(5000):953-6.
Sierra A, Encinas J, Maletic M. Adult human neurogenesis: from microscopy to magnetic resonance imaging. Front Neurosci. 2011;5(47):1-18.
Van Praag H, Kempermann G, Gage F. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. 1999;2(3):266-70.
Gómez F, Ying Z, Roy R, Molteni R, Edgerton V. Voluntary exercise induce a BDNF mediated mechanism that promotes neuroplasticity. J Neurophysiol. 2002;88(5):2187-95.
Nokia M, Lensu S, Ahtiainen J, Johansson P, Koch L, Britton S, et al. Physical exercise increases adult hippocampal neurogenesis in male rats provided it is aerobic and sustained. J Physiol. 2016;7(594):1855-73.
Olson A, Eadie B, Ernst C, Christie B. Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus. 2006;16(3):250-60.
Davenport M, Hogan D, Eskes G, Longman R, Poulin M. Cerebrovascular reserve: the link between fitness and cognitive function? Exerc Sport Sci Rev. 2012;40(3):153-8.
Swain R, Harris A, Wiener E, Dutka M, Morris H, Theien B, et al. Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience. 2003;117(4): 1037-46.
Vaynman S, Ying Z, Gómez-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci. 2004;20(10):2580-90.
Vissing J, Andersen M, Diemer N. Exercise-induced changes in local cerebral glucose utilization in the rat. J Cereb Blood Flow Metab. 1996;16(4):729-36.
Acevedo C, Ávila J, Cárdenas L. Efectos del ejercicio y la actividad motora sobre la estructura y función cerebral. Revista Mexicana de Neurociencia. 2014;15(1):36-53. Disponible en: http://www.medigraphic. com/pdfs/revmexneu/rmn-2014/rmn141f.pdf
Hötting K, Röder, B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev. 2013;37(9 Pt B):2243-57.
Lee T, Wong M, Lau B, Lee J, Yau S, So K. Aerobic exercise interacts with neurotrophic factors to predict cognitive functioning in adolescents. Psychoneuroendocrinology. 2014;39:214-24.
Ferreira A, Real C, Rodrígues A, Alves A, Britto L. Short-term, moderate exercise is capable of inducing structural, BDNF-independent hippocampal plasticity. Brain Res. 2011;1425:111-22.
Cassilhas R, Lee K, Fernándes J, Oliveira M, Tufik S, Meeusen R, et al. Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience. 2012;202:309-17.
Johnson R, Rhodes J, Jeffreya S, Garland T, Mitchella G. Hippocampal brain-derived neurotrophic factor but not neurotrophin-3 increases more in mice selected for increased voluntary wheel running. Neuroscience. 2003;121(1):1-7.
Arikawa A, Kurzer M, Thomas W, Schmitz K. No effect of exercise on insulin-like growth factor-I, insulin, and glucose in young women participating in a 16-week randomized controlled trial. Cancer Epidemiol Biomarkers Prev. 2010;19(11):2987-90.
Correia P, Pansani A, Machado F, Andrade M, Silva A, Scorza F, et al. Acute strength exercise and the involvement of small or large muscle mass on plasma brain-derived neurotrophic factor levels. Clinics (São Paulo, Brazil). 2010;65(11):1123-6.
Goekint M, De Pauw K, Roelands B, Njemini R, Bautmans I, Mets T, et al. Strength training does not influence serum brain-derived neurotrophic factor. Eur J Appl Physiol. 2010;110(2):285-93.
De Souza Vale R, de Oliveira R, Pernambuco C, de Meneses Y, Novaes J, de Andrade A. Effects of muscle strength and aerobic training on basal serum levels of IGF-1 and cortisol in elderly women. Arch Gerontol Geriatr. 2009;49(3):343-7.
Garthe A, Roeder I, Kempermann G. Mice in an enriched environment learn more flexibly because of adult hippocampal neurogenesis. Hippocampus. 2016;26(2):261-71.
Monteiro B, Moreira F, Massensini A, Moraes M, Pereira G. Enriched environment increases neurogenesis and improves social memory persistence in socially isolated adult mice. Hippocampus. 2014;24(2):239-48.
Rossi C, Angelucci A, Costantin L, Braschi C, Mazzantini M, Babbini F, et al. Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur J Neurosci. 2006;24(7):1850-6.
Brown J, Cooper C, Kempermann G, Van Praag H, Winkler J, Gage F, et al. Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci. 2003;17(10):2042-6.
Gusmão I, Monteiro B, Cornélio G, Fonseca C, Moraes, M, Pereira G. Odor-enriched environment rescues long-term social memory but does not improve olfaction in social isolated adult mice. Behavioural Brain Research. 2012;228(2):440-6.
Silva C, Duarte F, Lima T, de Oliveira C. Effects of social isolation and enriched environment on behavior of adult Swiss mice do not require hippocampal neurogenesis. Behav Brain Res. 2011;225(1):85-90.
Kobilo T, Liu Q, Gandhi K, Mughal M, Shaham Y, van Praag H. Running is the neurogenic and neurotrophic stimulus in environmental enrichment. Learn Mem. 2011;18(9):605-9.
Schloesser R, Lehmann M, Martinowich K, Manji H, Herkenham M. Environmental enrichment requires adult neurogenesis to facilitate the recovery from psychosocial stress. Mol Psychiatry. 2010;15(12):1152-63.
Sun H, Zhang J, Zhang L, Liu H, Zhu H, Yang Y. Environmental enrichment influences BDNF and NR1 levels in the hippocampus and restores cognitive impairment in chronic cerebral hypoperfused rats. Curr Neurovasc Res. 2010;7(4):268-80.
Mustroph M, Chen S, Desai S, Cay E, Deyoung E, Rhodes J. Aerobic exercise is the critical variable in an enriched environment that increases hippocampal neurogenesis and water maze learning in male C57bl/6j mice. Neuroscience. 2012;219:62-71.
Gobbo O, O’Mara S. Impact of enriched-environment housing on brain- derived neurotrophic factor and on cognitive performance after a transient global ischemia. Behav Brain Res. 2004;152(2):231-41.
Vaynman S, Ying Z, Gómez-Pinilla F. Exercise induces BDNF and synapsin I to specific hippocampal subfields. J Neurosci Res. 2004; 76(3):356-62.
Vivar C, Potter M, van Praag H. All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis. Curr Top Behav Neurosci. 2013;15:189-210.
Kita I. Physical exercise can induce brain plasticity and regulate mental function. Advances In Exercise & Sports Physiology. 2014;20(1):1-7.
Beauquis J, Roig P, de Nicola A, Saravia F. Short-term environmental enrichment enhances adult neurogenesis, vascular network and dendritic complexity in the hippocampus of type 1 diabetic mice. PloS One. 2010; 5(11):e13993.
Ip E, Giza C, Griesbach G, Hovda D. Effects of enriched environment and fluid percussion injury on dendritic arborization within the cerebral cortex of the developing rat. J Neurotrauma. 2002;19(5):573-85.