2018, Número 3
<< Anterior Siguiente >>
Alerg Asma Inmunol Pediatr 2018; 27 (3)
La historia del eosinófilo, su papel fisiopatológico y manifestaciones clínicas de la eosinofilia
López BC, Mendoza D, Huerta LJG
Idioma: Español
Referencias bibliográficas: 69
Paginas: 79-93
Archivo PDF: 469.82 Kb.
RESUMEN
El eosinófilo, aunque probablemente fue observado por primera vez por Wharton Jones en 1846 en preparaciones no teñidas de sangre periférica, fue nombrado así por Paul Ehrlich en 1879 quien publicó su técnica para teñir los frotis de sangre y su método para el recuento diferencial de células sanguíneas usando colorantes de alquitrán de hulla. Ehrlich introdujo el término «eosinófilo» para describir las células con gránulos (las cuales llamó alfa-gránulos) que tienen afinidad por la eosina y otros colorantes ácidos. Describió las características del alfa-gránulo y la distribución de las células en varias especies y tejidos. Casi todos los aspectos del eosinófilo se han discutido a lo largo del tiempo desde su descubrimiento. El conocimiento alcanzado sobre el desarrollo, regulación y función del eosinófilo en la enfermedad ha permitido el desarrollo de diversos enfoques terapéuticos para el tratamiento de pacientes que padecen enfermedades asociadas con la eosinofilia.
REFERENCIAS (EN ESTE ARTÍCULO)
Bergmann KC, Ring J. History of allergy. Pediatric Allergy and Immunology. 2014; 100: 193-204.
Kay AB. Paul Ehrlich and the early history of granulocytes. Microbiol Spectr. 2016; 4 (4): doi: 10.1128/microbiolspec.MCHD-0032-2016.
Hajdu SI. The discovery of blood cells. Ann Clin Lab Sci. 2003; 33: 237-238.
Kay AB. The early history of the eosinophil. Clin Exp Allergy. 2015; 45 (3): 575-582.
Vogel J. The pathological anatomy of the human body. (Translated from German by George E. Day). Philadelphia: Blanchard and Lea, 1847.
Wharton Jones T. The blood corpuscle considered in its different phases of development in the animal series. Memoir 1, vertebrata. Philos Trans R Soc Lond. 1846; 136: 63-87.
Brewer DB. Max Schultze and the living, moving, phagocytosing leucocytes: 1865. Med Hist. 1994; 38 (1): 91-101.
Ehrlich P. Methodologische beitrage zur physiologie und pathologie der verschiedenen formen der leukocyten. Z Klin Med. 1880; 1: 553-560.
Biggart JH. The origin of the eosinophil granule. Ulster Med J. 1933; 2 (1): 47-52.
Brown TR. Studies on trichinosis, with especial reference to the increase of the eosinophilic cells in the blood and muscle, the origin of these cells and their diagnostic importance. J Exp Med. 1898; 3 (3): 315-347.
Weller PF, Goetzl EJ. The human eosinophil: roles in host defense and tissue injury. Am J Pathol. 1980; 100 (3): 791-820.
Fischkoff SA, Pollak A, Gleich GJ, Testa JR, Misawa S, Reber TJ. Eosinophilic differentiation of the human promyelocytic leukemia cell line, HL-60. J Exp Med. 1984; 160: 179-196.
Vadas MA. Genetic control of eosinophilia in mice: gene(s) expressed in bone marrow derived cells control high responsiveness. J Immunol. 1982; 128 (2): 691-695.
McNagny KM, Sieweke MH, Döderlein G, Graf T, Nerlov C. Regulation of eosinophil-specific gene expression by a C/EBP-Ets complex and GATA-1. EMBO J. 1998; 17 (13): 3669-3680.
Yu C, Cantor AB, Yang H, Browne C, Wells RA, Fujiwara Y, Orkin SH. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J Exp Med. 2002; 195 (11): 1387-1395.
Mahmoud AAF, Stone MK, Kellermeyer RW. Eosinophilopoietin: a circulating low molecular weight peptide-like substance which stimulates the production of eosinophils in mice. J Clin Invest. 1977; 60 (3): 675-682.
Basten A, Boyer MH, Beeson PB. Mechanism of eosinophilia. Factors affecting the eosinophil response of rats to Trichinella spiralis. J Exp Med. 1970; 131 (6): 1271-1287.
Boyer MH, Basten A, Beeson PB. Mechanism of eosinophilia. 3. Suppression of eosinophilia by agents known to modify immune response. Blood. 1970; 36: 458-469.
Basten A, Beeson PB. Mechanism of eosinophilia. II. Role of the lymphocyte. J Exp Med. 1970; 131 (6): 1288-1305.
Dumonde DC. Lymphokines: molecular mediators of cellular immune responses in animals and man. Proc R Soc Med. 1970; 63 (9): 899-902.
Sanderson CJ, O’Garra A, Warren DJ, Klaus GG. Eosinophil differentiation factor also has B-cell growth factor activity: proposed name interleukin 4. Proc Natl Acad Sci USA. 1986; 83 (2): 437-440.
Strober W, James SP. The Interleukins. Pediatr Res. 1988; 24: 549-557.
Azuma C, Tanabe T, Konishi M, Kinashi T, Noma T, Matsuda F et al. Cloning of cDNA for human T-cell replacing factor (interleukin-5) and comparison with murine homologue. Nucleic Acids Res. 1986; 14 (22): 9149-9158.
Yamaguchi Y, Hayashi Y, Sugama Y, Miura Y, Kasahara T, Kitamura S et al. Highly purified murine interleukin 5 (IL-5) stimulates eosinophil function and prolongs in vitro survival: IL-5 as an eosinophil chemotactic factor. J Exp Med. 1988; 167 (5): 1737-1742.
Lopez AF, Begley CG, Williamson DJ, Warren DJ, Vadas MA, Sanderson C. Murine eosinophil differentiation factor: an eosinophil-specific colony-stimulating factor with activity for human cells. J Exp Med. 1986; 163 (5): 1085-1099.
Mita S, Tominaga A, Hitoshi Y, Sakamoto K, Honjo T, Akagi M et al. Characterization of high-affinity receptors for interleukin 5 on interleukin 5-dependent cell lines. Proc Natl Acad Sci USA. 1989; 86 (7): 2311-2315.
Takaki S, Tominaga A, Hitoshi Y, Mita S, Sonada E, Yamaguchi N et al. Molecular cloning and expression of the murine interleukin-5 receptor. EMBO J. 1990; 9 (13): 4367-4374.
Rolink AG, Melchers F, Palacios R. Monoclonal antibodies reactive with the mouse interleukin 5 receptor. J Exp Med. 1989; 169 (5): 1693-1701.
Takaki S, Mita S, Kitamura T, Yonehara S, Yamaguchi N, Tominaga A et al. Identification of the second subunit of the murine interleukin-5 receptor: interleukin-3 receptor-like protein, AIC2B is a component of the high affinity interleukin 5 receptor. EMBO J. 1991; 10: 2833-2838.
Dent LA, Strath M, Mellor AL, Sanderson CJ. Eosinophilia in transgenic mice expressing interleukin 5. J Exp Med. 1990; 172: 1425-1431.
Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG. Interleukin 5 deficiency abolishes eosinophilia, airway hyperreactivity, and lung damage in a mouse asthma model. J Exp Med. 1996; 183: 195-201.
Simon HU, Yousefi S, Schranz C, Schapowal A, Bachert C, Blaser K. Direct demonstration of delayed eosinophil apoptosis as a mechanism causing tissue eosinophilia. J Immunol. 1997; 158: 3902-3908.
Simon D, Simon HU. Eosinophilic disorders. J Allergy Clin Immunol. 2007; 119: 1291-1300.
Simon HU, Rothenberg ME, Bochner BS, Weller PF, Wardlaw AJ, Wechsler ME et al. Refining the definition of hypereosinophilic syndrome. J Allergy Clin Immunol. 2010; 126: 45-49.
Simon HU, Plötz SG, Dummer R, Blaser K. Abnormal clones of T cells producing interleukin-5 in idiopathic eosinophilia. N Engl J Med. 1999; 341: 1112-1120.
Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndromes. N Engl J Med. 2003; 348: 1201-1214.
Simon HU, Klion A. Therapeutic approaches to patients with hypereosinophilic syndromes. Semin Hematol. 2012; 49: 160-170.
Rothenberg ME, Hogan SP. The eosinophil. Annu Rev Immunol. 2006; 24: 147-174.
Plotz SG, Simon HU, Darsow U, Simon D, Vassina E, Yousefi S et al. Use of anti-interleukin-5 antibody in the hypereosinophilic syndrome with eosinophilic dermatitis. N Engl J Med. 2003; 349: 2334-2339.
Leckie MJ, Ten Brinke A, Khan J, Diamant Z, O’Connor BJ, Walls CM et al. Effects of an interleukin -5 blocking monoclonal antibody on eosinophils, airway hyperresponsiveness and the late asthmatic response. Lancet. 2000; 356: 2144-2148.
Pavord ID, Korn S, Howarth P, Bleecker ER, Buhl R, Keene ON et al. Mepolizumab for severe eosinophilic asthma (D REAM): a multicentre, double-blind, placebo-controlled trial. Lancet. 2012; 380: 651-659.
Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med. 2009; 360: 973-984.
Nair P, Pizzichini MM, Kjarsgaard M, Inman MD, Efthimiadis A, Pizzichini E et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med. 2009; 360: 985-993.
Flood-Page PT, Menzies-Gow AN, Kay AB, Robinson DS. Eosinophil’s role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am J Respir Crit Care Med. 2003; 167: 199-204.
Straumann A, Conus S, Grzonka P, Kita H, Kephart G, Bussmann C et al. Anti-interleukin-5 antibody treatment (mepolizumab) in active eosinophilic oesophagitis: a randomized, placebo-controlled, doubleblind trial. Gut. 2010; 59: 21-30.
Archer GT, Hirsch JG. Isolation of granules from eosinophil leucocytes and study of their enzyme content. J Exp Med. 1963; 118: 227-286.
Roth N, Stadler S, Lemann M, Hosli S, Simon HU, Simon D. Distinct eosinophil cytokine expression patterns in skin diseases: the possible existence of functionally different eosinophil subpopulations. Allergy. 2011; 66: 1477-1486.
Mahmoud AA, Warren KS, Peters PA. A role for the eosinophil in acquired resistance to Schistosoma mansoni infection as determined by antieosinophil serum. J Exp Med. 1975; 142: 805-813.
Glaubert AM, Butterworth AE, Sturrock RF, Houba V. The mechanism of antibody-dependent, eosinophil-mediated damage to schistosomula of Schistosoma mansoni in vitro: a study by phase-contrast and electron microscopy. J Cell Sci. 1978; 34: 173-192.
Gleich GJ, Loegering DA, Maldonado JE. Identification of a major basic protein in guinea pig eosinophil granules. J Exp Med. 1973; 137: 1459-1471.
Gleich GJ, Loegering DA, Adolphson CR. Eosinophils and bronchial inflammation. Chest. 1985; 87: l0S-13S.
Gleich GJ, Frigas E, Loegering DA, Wassom DL, Steinmuller D. Cytotoxic properties of the eosinophil major basic protein. J Immunol. 1979; 123: 2925-2927.
Durack DT, Sumi SM, Klebanoff SJ. Neurotoxicity of human eosinophils. Proc Natl Acad Sci USA. 1979; 76: 1443-1447.
Peterson CG, Venge P. Purification and characterization of a new cationic protein--eosinophil protein-X (EPX)--from granules of human eosinophils. Immunology. 1983; 50: 19-26.
Olssen I, Venge P. Cationic proteins of human granulocytes. 2. Separation of the cationic proteins of the granules of leukemic myeloid cells. Blood. 1974; 44: 235-246.
Motojima S, Frigas E, Loegering DA, Gleich GJ. Toxicity of eosinophil cationic proteins for guinea pig tracheal epithelium in vitro. Am Rev Respir Dis. 1989; 139 (3): 801-805.
O’Donnell MC, Ackerman SJ, Gleich GJ, Thomas LJ. Activation of basophil and mast cell histamine release by eosinophil granule major basic protein. J Exp Med. 1983; 157: 1981-1991.
Henderson WR, Chi EY, Klebanoff SJ. Eosinophil peroxidase-induced mast cell secretion. J Exp Med. 1980; 152 (2): 265-279.
Yoon J, Ponikau JU, Lawrence CB, Kita H. Innate antifungal immunity of human eosinophils mediated by a beta 2 integrin, CD11b. J Immunol. 2008; 181 (4): 2907-2915.
Stevens RL. Viral infections: beneficial role of eosinophils. Blood. 2007; 110 (5): 1406.
Adamko DJ, Yost BL, Gleich GJ, Fryer AD, Jacoby DB. Ovalbumin sensitization changes the inflammatory response to subsequent parainfluenza infection. Eosinophils mediate airway hyperresponsiveness, m(2) muscarinic receptor dysfunction, and antiviral effects. J Exp Med. 1999; 190 (10): 1465-1478.
Linch SN, Kelly AM, Danielson ET, Pero R, Lee JJ, Gold JA. Mouse eosinophils possess potent antibacterial properties in vivo. Infect Immun. 2009; 77 (11): 4976-4982.
Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med. 2008; 14 (9): 949-953.
Wardlaw AJ. Eosinophils in the 1990s: new perspectives on their role in health and disease. Postgrad Med J. 1994; 70 (826): 536-552.
Takafuji S, Bischoff SC, De Weck AL, Dahinden CA. IL-3 and IL-5 prime normal human eosinophils to produce leukotriene C4 in response to soluble agonists. J Immunol. 1991; 147 (11): 3855-3861.
Humbles AA, Lloyd CM, McMillan SJ, Friend DS, Xanthou G, McKenna EE et al. A critical role for eosinophils in allergic airways remodeling. Science. 2004; 305 (5691): 1776-1779.
Cho JY, Miller M, Baek KJ, Han JW, Nayar J, Lee SY et al. Inhibition of airway remodeling in IL-5-deficient mice. J Clin Invest. 2004; 113 (4): 551-560.
Flood-Page P, Menzies-Gow A, Phipps S, Ying S, Wangoo A, Ludwig MS et al. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J Clin Invest. 2003; 112 (7): 1029-1036.
Phipps S, Flood-Page P, Menzies-Gow A, Ong YE, Kay AB. Intravenous anti-IL-5 monoclonal antibody reduces eosinophils and tenascin deposition in allergen-challenged human atopic skin. J Invest Dermatol. 2004; 122 (6): 1406-1412.