2018, Número 4
<< Anterior Siguiente >>
Gac Med Mex 2018; 154 (4)
Impacto de la medicina nuclear en el diagnóstico y tratamiento del cáncer diferenciado de tiroides
Medina-Ornelas S, García-Pérez F, Granados-García M
Idioma: Español
Referencias bibliográficas: 71
Paginas: 509-519
Archivo PDF: 1135.59 Kb.
RESUMEN
Los pacientes afectados por el cáncer diferenciado de tiroides habitualmente presentan un curso clínico favorable, ya que la
piedra angular del tratamiento es la cirugía; a pesar de esto, algunos pueden desarrollar un ominoso desenlace, debido a las
características clinico-patológicas de esta enfermedad. El tratamiento óptimo aún es controvertido, en especial respecto a la extensión
de la cirugía, indicaciones de radioyodo y la supresión de la hormona estimulante de la tiroides. La correcta evaluación
de los riesgos, antes y después de la cirugía, facilita un selectivo enfoque del tratamiento; destacando la relevancia de revisar el
impacto de la medicina nuclear en la correcta evaluación, tratamiento y seguimiento de los pacientes que padecen esta neoplasia.
REFERENCIAS (EN ESTE ARTÍCULO)
Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC Cancer Base No. 11. Lyon, France: International Agency for Research on Cancer; 2013. Disponible en: http://globocan.iarc.fr, accessed on 20/December/2016
Bongiovanni M, Paone G, Ceriani L, Pusztaszeri M. Cellular and molecular basis for thyroid cancer imaging in nuclear medicine. Clin Trans Imaging. 2013;1:149-161.
Granados-García M, León-Takahashi AM, Guerrero-Huerta FJ, Taissoun- Aslan ZA. Cáncer diferenciado de tiroides: una antigua enfermedad con nuevos conocimientos. Gac Med Mex. 2014;150:65-77.
Robbins R, Schulemberg M. The evolving role of 131I for the treatment of differentiated thyroid carcinoma. J Nucl Med. 2005;46:28S-37S.
Maxon HR, Thomas SR, Hertzberg VS, Kereiakes JG, Chen IW, Sperling MI, et al. Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. N Engl J Med. 1983;309:937-941.
Braunstein GD (editor). Thyroid Cancer. Volume 32 of Endocrine Updates. EE.UU.: Springer Science & Business Media; 2011.
Dorn R, Kopp J, Vogt H, Heidenreich P, Carroll RG, Gulec SA. Dosimetry- guided radiactive iodine treatment in patients with metastatic differentiated thyroid cancer. Largest safe dose using a risk-adapted approach. J Nucl Med. 2003;44:451-456.
Eskandari S, Loo DD, Dai G, Levy O, Wright EM, Carrasco N. Thyroid Na+/I-symporter. Mechanism, stoichiometry, and specificity. J Biol Chem. 1997;272:27230-27238
De-La-Vieja A, Dohan O, Levy O, Carrasco N. Molecular analysis of the sodium/iodide symporter: impact on thyroid and extrathyroid pathophysiology. Physiol Rev. 2000;80:1083-1105.
Caillou B, Troalen F, Baudin E, Talbot M, Filetti S, Schlumberger M, et al. Na+/I- symporter distribution in human thyroid tissues: an immunohistochemical study. J Clin Endocrinol Metab. 1998;83:4102-4106.
Daniels GH, Haber DA. Will radioiodine be useful in treatment of breast cancer? Nat Med. 2000;6:859-860.
Filetti S, Bidart JM, Arturi F, Caillou B, Russo D, Schlumberger M. Sodium/ iodide symporter: a key transport system in thyroid cancer cell metabolism. Eur J Endocrinol. 1999;141:443-457.
Dohán O, Baloch Z, Banrevi Z, Livolsi V, Carrasco N. Predominant intracellular overexpression of the Na+/I+ symporter (NIS) in a large sampling of thyroid cancer cases. J Clin Endocrinol Metab. 2001;86:2697- 2700.
Saito T, Endo T, Kawaguchi A, Ikeda M, Katoh R, Kawaoi A, et al. Increased expression of the sodium/iodide symporter in papillary thyroid carcinomas. J Clin Invest. 1998;101:1296-1300.
Min JJ, Chung JK, Lee YJ, Jeong JM, Lee DS, Jang JJ, et al. Relationship between differentiation and expression of sodium/iodide symporter or glucose transporter-1 in differentiated thyroid carcinoma. J Nucl Med. 2001;42:133P.
Wapnir IL, Van-De-Rijn M, Nowels K, Amenta PS, Walton K, Montgomery K, et al. Immunohistochemical profile of the sodium/iodide symporter in thyroid, breast, and other carcinomas using high-density tissue microarrays and conventional sections. J Clin Endocrinol Metab. 2003;88:1880-1888.
Sawka AM, Ibrahim-Zada I, Galacgac P, Tsang RW, Brierley JD, Ezzat S, et al. Dietary iodine restriction in preparation for radiactive iodine treatment or scanning in well-differentiated thyroid cancer: a systematic review. Thyroid. 2010;20:1129-1138.
Thyroid cancer. En: Clinical Practice Guidelines in Oncology. EE.UU.: National Comprehensive Cancer Network.
Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26:1-133.
Golger A, Fridman TR, Eski S, Witterick IJ, Freeman JL, Walfish PG. Three-week thyroxine withdrawal thyroglobulin stimulation screening test to detect low-risk residual/recurrent well-differentiated thyroid carcinoma. J Endocrinol Invest. 2003;26:1023-1031.
Dow KH, Ferrell BR, Anello C. Quality-of-life changes in patients with thyroid cancer after withdrawal of thyroid hormone therapy. Thyroid. 1997:7:613-619.
Almeda-Valdés P, Arechavaleta-Granell M, Bolaños-Gil-De-Montes F, Cuevas-Ramos D, Gamboa-Domínguez A, Gómez-Cruz R, et al. Guía clínica para el diagnóstico y tratamiento del cáncer diferenciado de tiroides. México: Sociedad Mexicana de Nutrición y Endocrinología; 2009.
Pötzi C, Moameni A, Karanikas G, Preitfellner J, Becherer A, Pirich C, et al. Comparison of iodine uptake in tumour and nontumour tissue under thyroid hormone deprivation and with recombinant human thyrotropin in thyroid cancer patients. Clin Endocrinol (Oxf). 2006;65 519-523.
Rosário PW, Borges MA, Purisch S. Preparation with recombinant human thyroid-stimulating hormone for thyroid remnant ablation with 131I is associated with lowered radiotoxicity. J Nucl Med. 2008;49:1776-1782.
Leboeuf R, Perron P, Carpentier AC, Verreault J, Langlois MF. L-T3 preparation for whole-body scintigraphy: a randomized-controlled trial. Clin Endocrinol (Oxf). 2007;67:839-844.
Pluijmen MJ, Eustatia-Rutten C, Goslings BM, Stokkel MP, Arias AM, Diamant M, et al. Effects of low-iodide diet on postsurgical radioiodide ablation therapy in patients with differentiated thyroid carcinoma. Clin Endocrinol (Oxf). 2003;58:428–435.
Sonenberg M. Low-iodine diet in the treatment of differentiated thyroid cancer with radiactive iodine. Endocrine. 2002;17:141-143.
Robbins RJ, Driedger A, Magner J. Recombinant human thyrotropin-assisted radioiodine therapy for patients with metastatic thyroid cancer who could not elevate endogenous thyrotropin or be withdrawn from thyroxine. Thyroid. 2006;16:1121-1130.
Liel Y. Preparation for radiactive iodine administration in differentiated thyroid cancer patients. Clin Endocrinol (Oxf). 2002;57:523–527.
Van-Nostrand D, Wartofsky L. Radioiodine in the treatment of thyroid cancer. Endocrinol Metab Clin North Am. 2007;36:807-822.
Perris P, Colley S, Boelaert K, Evans C, Evans RM, Gerrard GE, et al. British Thyroid Association Guidelines for the Management of Thyroid Cancer. Clin Endocrinol. 2014;81:1-122.
Carty SE, Doherty GM, Inabnet WB, Pasieka JL, Randolph GW, Shaha AR, et al. American Thyroid Association statement on the essential elements of interdisciplinary communication of perioperative information for patients undergoing thyroid cancer surgery. Thyroid. 2012;22:395-399.
Verkooijen RB, Verburg FA, Van-Isselt JW, Lips CJ, Smit JW, Stokkel MP. The success rate of I-131 ablation in differentiated thyroid cancer: comparison of uptake-related and fixed-dose strategies. Eur J Endocrinol. 2008;159:301-307.
Robbins RJ, Schlumberger MJ. The evolving role of 131I for the treatment of differentiated thyroid carcinoma. J Nucl Med. 2005;46:28S-37S
Schvartz C, Bonnetain F, Debakuyo S, Gauthier M, Cueff A, Fieffé S, et al. Impact on overall survival of radiactive iodine low-risk differentiated thyroid cancer patients. J Clin Endocrinol Metab. 2012;97:1526-1535.
Mallick U, Harmer C, Yap B, Wadsley J, Clarke S, Moss L, et al. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. N Engl J Med. 2012;366:1674-1685.
Cheng W, Ma C, Fu H, Li J, Chen S, Wu S, et al. Low- or high-dose radioiodine remnant ablation for differentiated thyroid carcinoma: a meta- analysis. J Clin Endocrinol Metab. 2013;98:1353-1360.
Fallahi B, Beiki D, Takavar A, Fard-Esfahani A, Gilani KA, Saghari M, et al. Low versus high radioiodine dose in postoperative ablation of residual thyroid tissue in patients with differentiated thyroid carcinoma: a large randomized clinical trial. Nucl Med Commun. 2012;33:275-282.
Shah MD, Hall FT, Eski SJ, Witterick IJ, Walfish PG, Freeman JL. Clinical course of thyroid carcinoma after neck dissection. Laryngoscope. 2003;113:2102-2107.
Ruel E, Thomas S, Dinan M, Perkins JM, Roman SA, Sosa JA. Adjuvant radiactive iodine therapy is associated with improved survival for patients with intermediate-risk papillary thyroid cancer. J Clin Endocrinol Metab. 2015,100:1529-1536.
Lamartina L, Durante C, Filetti S, Cooper DS. Low-risk differentiated thyroid cancer and radioiodine remnant ablation: a systematic review of the literature. J Clin Endocrinol Metab. 2015;100:1748-1761.
Sabra M, Grewal RK, Ghossein RM, Tuttle RM. Higher administered activities of radiactive iodine are associated with less structural persistent response in older, but not younger, papillary thyroid cancer patients with lateral neck lymph node metastases. Thyroid. 2014;24:1088-1095.
Schlumberger M, Tubiana M, De-Vathaire F, Hill C, Gardet P, Travagli JP, et al. Long-term results of treatment of 283 patients with lung and bone metastases from differentiated thyroid carcinoma. J Clin Endocrinol Metab. 1986;63:960-967.
Van-Nostrand D, Atkins F, Yeganeh F, Acio E, Bursaw R, Wartofsky L. Dosimetrically determined doses of radioiodine for the treatment of metastatic thyroid carcinoma. Thyroid. 2002;12:121-134.
Beckers C, Van-Ypersele-De-Strihou C, Coche E, Troch R, Malvaux P. Iodine metabolism in severe renal insufficiency. J Clin Endocrinol Metab. 1969;29:293-296.
Tuttle M, Lebeauf R, Robbins RJ, Qualey R, Pentlow K, Larson SM, et al. Empiric radiactive iodine dosing regimens frequently exceed maximum tolerated activity levels in elderly patients with thyroid cancer. J Nucl Med. 2006;47:1587-1591.
Avram AC. Radioiodine scintigraphy with SPECT/CT: an important diagnostic tool for thyroid cancer staging and risk stratification. J Nucl Med. 2012;53:754-764.
Avram AM, Doherty GM, Fig LM, Wong K. Diagnostic 131-I fusion SPECT-CT Imaging in postoperative thyroid cancer patients: what is the impact on staging? Thyroid. 2011;21:193.
Brenner W. Is thyroid stunning a real phenomenon or just fiction? J Nucl Med. 2002;43:835-836.
Guiraud-Vitaux F, Feldmann G, Vadrot N, Charles-Gupta S, Durand-Schneider AM, Colas-Linhart N, et al. Early ultrastructural injuries in the thyroid of the normal rat radioinduced by diagnostic and/or therapeutic amounts of iodine-131. Cell Mol Biol (Noisy-le-grand). 2001;47:495-502.
Kao CH, Yen TC. Stunning effects after a diagnostic dose of iodine-131. Nuklearmedizin. 1998;37:30-32.
Aide N, Heutte N, Rame JP, Rousseau E, Loiseau C, Henry-Amar M, et al. Clinical relevance of single-photon emission computed tomography/ computed tomography of the neck and thorax in postablation 131I scintigraphy for thyroid cancer. J Clin Endocrinol Metab. 2009;94:2075-2084.
Ciappuccini R, Heutte N, Trzepla G, Rame JP, Vaur D, Aide N, et al. Postablation (131)I scintigraphy with neck and thorax SPECT-CT and stimulated serum thyroglobulin level predict the outcome of patients with differentiated thyroid cancer. Eur J Endocrinol. 2011;164:961-969.
Tuttle RM, Tala H, Shah J, Leboeuf R, Ghossein R, Gonen M, et al. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radiactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid. 2010; 20:1341-1349.
Vaisman F, Shaha A, Fish S, Tuttle RM. Initial therapy with either thyroid lobectomy or total thyroidectomy without radiactive iodine remnant ablation is associated with very low rates of structural disease recurrence in properly selected patients with differentiated thyroid cancer. Clin Endocrinol (Oxf). 2011;75:112-119.
Webb RC, Howard RS, Stojadinovic A, Gaitonde DY, Wallace MK, Ahmed J, et al. The utility of serum thyroglobulin measurement at the time of remnant ablation for predicting disease-free status in patients with differentiated thyroid cancer: a metaanalysis involving 3947 patients. J Clin Endocrinol Metab. 2012;97:2754-2763.
Latrofa F, Ricci D, Montanelli L, Rocchi R, Piaggi P, Sisti E, et al. Lymphocytic thyroiditis on histology correlates with serum thyroglobulin autoantibodies in patients with papillary thyroid carcinoma: impact on detection of serum thyroglobulin. J Clin Endocrinol Metab. 2012; 97:2380-2387.
Görges R, Maniecki M, Jentzen W, Sheu SN, Mann K, Bockisch A, et al. Development and clinical impact of thyroglobulin antibodies in patients with differentiated thyroid carcinoma during the first 3 years after thyroidectomy. Eur J Endocrinol. 2005;153:49-55.
Spencer CA. Clinical review: clinical utility of thyroglobulin antibody (TgAb) measurements for patients with differentiated thyroid cancers (DTC). J Clin Endocrinol Metab. 2011;96:3615-3627.
Kim WG, Yoon JH, Kim WB, Kim TY, Kim EY, Kim JM, et al. Change of serum antithyroglobulin antibody levels is useful for prediction of clinical recurrence in thyroglobulin-negative patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2008;93:4683-4689.
Palaniswamy SS, Subramanyam P. Diagnostic utility of PETCT in thyroid malignancies: an update. Ann Nucl Med. 2013;27 681-693.
Feine U, Lietzenmayer R, Hanke JP, Held J, Wöhrle H, Müller-Schauenburg W. Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. J Nucl Med. 1996;37:1468-1472.
Schönberger J, Rüschoff J, Grimm D, Marienhagen J, Rümmele P, Meyringer R, et al. Glucose transporter 1 gene expression is related to thyroid neoplasms with an unfavorable prognosis: an immunohistochemical study. Thyroid. 2002;12:747-754.
Salvatori M, Biondi B, Rufini V. Imaging in endocrinology: 2-[18F]-fluoro- 2-deoxy-D-glucose positron emission tomography/computed tomography in differentiated thyroid carcinoma: clinical indications and controversies in diagnosis and follow-up. Eur J Endocrinol. 2016;173:115-130.
Pacak K, Eisenhofer G, Goldstein DS. Functional imaging of endocrine tumors: role of positron emission tomography. Endoc Rev. 2004;25:568-580.
Wang W, Larson SM, Fazzari M, Tickoo SK, Kolbert K, Sgouros G, et al. Prognostic value of [18F]fluorodeoxyglucose positron emission tomographic scanning in patients with thyroid cancer. J Clin Endocrinol Metab. 2000;85:1107-1113.
Leboulleux S, Schroeder PR, Schlumberger M, Ladenson PW. The role of PET in follow-up of patients treated for differentiated epithelial thyroid cancers. Nat Clin Pract Endocrinol Metab. 2007;3:112-121.
Grabellus F, Worm K, Schmid KW, Sheu SY. The BRAFV600E mutation in papillary thyroid carcinoma is associated with glucose transporter 1 overexpression. Thyroid. 2012;22:377-382.
Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, Bendlova B, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA. 2013;309:1493-1501.
Nagarajah J, Ho AL, Tuttle RM, Weber WA, Grewal RK, et al. Correlation of BRAFV600E mutation and glucose metabolism in thyroid cancer patients: an 18F-FDG PET study. J Nucl Med. 2015;56 662-666.
Stokkel MP, Duchateau CS, Drogoiescu C. The value of FDG-PET in the follow-up of differentiated thyroid cancer: a review of the literature. Q J Nucl Med Mol Imaging. 2006;50:78-87.