2018, Número 3
<< Anterior Siguiente >>
Acta Pediatr Mex 2018; 39 (3)
La influencia del exposoma en los primeros 1,000 días de vida y la salud gastrointestinal
Cuadros-Mendoza CA, Ignorosa-Arellano KR, Zárate-Mondragón FE, Toro-Monjaraz E, Cervantes-Bustamante R, Montijo-Barrios E, Cadena-León J, Serrano-Sierra A, Ramírez-Mayans JA
Idioma: Español
Referencias bibliográficas: 70
Paginas: 265-277
Archivo PDF: 479.22 Kb.
RESUMEN
Actualmente, sólo una pequeña proporción de enfermedades crónicas son explicadas
por factores genéticos. Aunque el conocimiento acerca de la exposición ambiental es
importante para determinar el origen de algunas enfermedades crónicas, éste aún es
impreciso. La investigación en humanos en este tema se ha centrado, principalmente,
en los efectos de una determinada exposición acerca de la salud.
El concepto de "exposoma" abarca la totalidad de las exposiciones desde la concepción
en adelante, complementando al genoma. La infancia temprana es una etapa de la vida
particularmente vulnerable a la exposición ambiental. El exposoma gastrointestinal
representa el conjunto de compuestos xenobióticos que afectan la función digestiva del
huésped. Por lo tanto, una mejor comprensión de la interacción entre el microbioma y
el exposoma gastrointestinal proporcionaría nuevas perspectivas de intervención clínica,
a través de la regulación de los sistemas inmunológico, metabólico o neuroendocrino
asociados con el intestino. Esta revisión de la bibliografía se enfoca en lo que representa
el exposoma, su constructo teórico, importancia, características y la influencia de éste
en los primeros mil días de vida y la salud gastrointestinal. Se revisaron 70 referencias
bibliográficas, sobre todo artículos publicados en revistas académicas en relación con
este tema a partir del año 2000 hasta la actualidad.
REFERENCIAS (EN ESTE ARTÍCULO)
Chang CQ, Yesupriya A, Rowell JL, Pimentel CB, Clyne M, Gwinn M, et al. A systematic review of cancer GWAS and candidate gene meta-analyses reveals limited overlap but similar effect sizes. Eur J Hum Genet. 2014;22(3):402-408.
Kim KN, Hong YC. The Exposome and the Future of Epidemiology: A Vision and Prospect. Environ Health Toxicol. 2017;32: e2017009.
Wild CP. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers Prev. 2005;14(8):1847-1850.
Robinson O, Vrijheid M. The Pregnancy Exposome. Curr Environ Health Rep. 2015;2: 204-13.
Vrijheid M, Slama R, Robinson O, Chatzi L, Coen M, van den Hazel P, et al. The human early-life exposome (HELIX): project rationale and design. Environ Health Perspect. 2014;122: 535-44.
Ananthakrishnan AN. The exposome in inflammatory bowel disease. Trop Gastroenterol. 2014;35: 135-40.
Rappaport SM. Implications of the exposome for exposure science. J Expo Sci Environ Epidemiol. 2011;21: 5-9.
Crane RJ, Jones KD, Berkley JA. Environmental enteric dysfunction: an overview. Food Nutr Bull. 2015;36(1 suppl):S76-S87.
Gordon JI, Dewey KG, Mills DA, Medzhitov RM. The human gut microbiota and undernutrition. Sci Transl Med. 2012;4:137ps112.
Wild CP. The exposome: from concept to utility. Int J Epidemiol. 2012;41(1):24-32.
Dennis KK, Auerbach SS, Balshaw DM, Cui Y, Fallin MD, Smith MT, et al. The importance of the biological impact of exposure to the concept of the exposome. Environ Health Perspect. 2016;124(10):1504-1510.
DeBord DG, Carreón T, Lentz TJ, Middendorf PJ, Hoover MD, Schulte PA. Use of the “exposome” in the practice of epidemiology: a primer on -omic technologies. Am J Epidemiol. 2016;184(4): 302-314.
Barouki R, Gluckman PD, Grandjean P, Hanson M, Heindel JJ. Developmental origins of non-communicable disease: implications for research and public health. Environ Health. 2012;11:42.
Gluckman P, Hanson M. Echoes of the past: Evolution, development, health and disease. Discov Med. 2004;4(24):401-7.
Bellinger DC, Burger J, Cade TJ, Cory-Slechta DA, Finkelstein M, Hu H, et al. Health risks from lead-based ammunition in the environment. Environ Health Perspect. 2013;121(6):A178-9.
Gascon M, Morales E, Sunyer J, Vrijheid M. Effects of persistent organic pollutants on the developing respiratory and immune systems: a systematic review. Environ Int. 2013;52:51-65.
La Merrill M, Birnbaum LS. Childhood obesity and environmental chemicals. Mt Sinai J Med. 2011;78(1):22-48.
Wigle DT, Arbuckle TE, Turner MC, Bérubé A, Yang Q, Liu S, t al. Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants. J Toxicol Environ Health B Crit Rev. 2008;11(5-6):373-517.
Bousquet J, Anto J, Auffray C, Akdis M, Cambon-Thomsen A, Keil T, et al. MeDALL (Mechanisms of the Development of ALLergy): an integrated approach from phenotypes to systems medicine. Allergy. 2011; 66(5):596-604.
Gallagher J, Hudgens E, Williams A, Inmon J, Rhoney S, Andrews G, et al. Mechanistic indicators of childhood asthma (MICA) study: piloting an integrative design for evaluating environmental health. BMC Public Health 2011;11:344.
Trasande L, Cronk C, Durkin M, Weiss M, Schoeller DA, Gall EA, et al. Environment and obesity in the National Children’s Study. Environ Health Perspect. 2009;117:159-166.
Van den Bergh BR. Developmental programming of early brain and behaviour development and mental health: a conceptual framework. Dev Med Child Neurol 2011;53(suppl 4):19-23.
Stingone JA, Buck Louis GM, Nakayama SF, Vermeulen RC, Kwok RK, Cui Y, et al. Toward greater implementation of the exposome research paradigm within environmental epidemiology. Annu Rev Public Health 2017;38:315-327.
Moon Y. Microbiome-Linked Crosstalk in the Gastrointestinal Exposome towards Host Health and Disease. Pediatr Gastroenterol Hepatol Nutr. 2016;19(4):221-228.
Zamudio-Vázquez VP, Ramírez-Mayans JA, ToroMonjaraz EM, Cervantes-Bustamante R, Zárate-Mondragón F, Montijo- Barrios E et al. Importancia de la microbiota gastrointestinal en pediatría. Acta Pediatr Mex. 2017;38(1):49-62.
Heavey PM, Rowland IR. Microbial-gut interactions in health and disease. Gastrointestinal cancer. Best Pract Res Clin Gastroenterol. 2004;18(2):323-36.
Murgas Torrazza R, Neu J. The developing intestinal microbiome and its relationship to health and disease in the neonate. J Perinatol. 2011;31 Suppl1: S29-34.
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59-65.
Arumugam M, Raes J, Pelletier E et al, MetaHIT Consortium: Enterotypes of the human gut microbiome. Nature. 2011;12: 473: 174-80.
Wu GD, Chen J, Hoffmann C et al. Linking long term dietary patterns with gut microbial enterotypes. Science. 2011;334: 105-8.
Kane M, et al. Successful Transmission of a Retrovirus Depends on the Commensal Microbiota. Science. 2011;334: 245-249
Raymond F, Ouameur AA, Déraspe M, Iqbal N, Gingras H, Dridi B, et al. The initial state of the human gut microbiome determines its reshaping by antibiotics. ISME J 2016;10:707-20.
Kang C, Zhang Y, Zhu X, Liu K, Wang X, Chen M, et al. Healthy subjects differentially respond to dietary capsaicin correlating with specific gut enterotypes. J Clin Endocrinol Metab. 2016;101:4681-9.
Fiocchi C. Towards a 'cure' for IBD. Dig Dis 2012;30: 428-33.
Fiocchi C. Integrating omics: the future of IBD? Dig Dis. 2014;32 Suppl 1:96-102.
Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009;137:1716-24.e1-2.
Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011;5:220-30.
Scanlan PD, Shanahan F, O'Mahony C, Marchesi JR. Culture- independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn's disease. J Clin Microbiol. 2006;44:3980-8.
Sepehri S, Kotlowski R, Bernstein CN, Krause DO. Microbial diversity of inflamed and noninflamed gut biopsy tissues in inflammatory bowel disease. Inflamm Bowel Dis. 2007;13:675-83.
Abreu MT, Arnold ET, Thomas LS, Gonsky R, Zhou Y, Hu B, et al. TLR4 and MD-2 expression is regulated by immune- mediated signals in human intestinal epitelial cells. J Biol Chem. 2002;277:20431-7.
Tenk I, Fodor E, Szathmáry C. The effect of pure Fusarium toxins (T-2, F-2, DAS) on the microflora of the gut and on plasma glucocorticoid levels in rat and swine. Zentralbl Bakteriol Mikrobiol Hyg A. 1982;252:384-93.
Waché YJ, Valat C, Postollec G, Bougeard S, Burel C, Oswald IP, et al. Impact of deoxynivalenol on the intestinal microflora of pigs. Int J Mol Sci. 2009;10:1-17.
Lunn PG, Northrop-Clewes CA, Downes RM: Intestinal permeability, mucosal injury, and growth faltering in Gambian infants. Lancet. 1991; 338:907–910.
Kosek M, Haque R, Lima A, et al: Fecal markers of intestinal inflammation and permeability associated with the subsequent acquisition of linear growth deficits in infants. Am J Trop Med Hyg. 2013;88:390-396.
Prendergast AJ, Rukobo S, Chasekwa B, et al: Stunting is characterized by chronic inflammation in Zimbabwean infants. PLoS One. 2014; 9:e86928.
Bezirtzoglou EE. Intestinal cytochromes P450 regulating the intestinal microbiota and its probiotic profile. Microb Ecol Health Dis 2012;23:10.3402/mehd.v23io. 18370.
Lei L, Waterman MR, Fulco AJ, Kelly SL, Lamb DC. Availability of specific reductases controls the temporal activity of the cytochrome P450 complement of Streptomyces coelicolor A3(2). Proc Natl Acad Sci USA. 2004;101:494-9.
Sperry JF, Wilkins TD. Presence of cytochrome c in Desulfomonas pigra. J Bacteriol. 1977;129:554-5.
Eden Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54:2325-40.
Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27:104-19.
Macfarlane GT, Macfarlane S. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics. J Clin Gastroenterol. 2011;45 Suppl: S120-7.
Schilderink R, Verseijden C, de Jonge WJ. Dietary inhibitors of histone deacetylases in intestinal immunity and homeostasis. Front Immunol. 2013;4:226.
Schilderink R, Verseijden C, Seppen J, Muncan V, van den Brink GR, Lambers TT, et al. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC. Am J Physiol Gastrointest Liver Physiol. 2016;310:G1138-46.
Tong X, Yin L, Giardina C. Butyrate suppresses Cox-2 activation in colon cancer cells through HDAC inhibition. Biochem Biophys Res Commun. 2004;317:463-71.
Thorburn AN, Macia L, Mackay CR. Diet, metabolites, and "western-lifestyle" inflammatory diseases. Immunity. 2014;40:833-42.
Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141:599-609, 609.e1-3.
Duca FA, Lam TK. Gut microbiota, nutrient sensing and energy balance. Diabetes Obes Metab. 2014;16 Suppl 1: 68-76.
Paul HA, Bomhof MR, Vogel HJ, Reimer RA. Diet-induced changes in maternal gut microbiota and metabolomic profiles influence programming of offspring obesity risk in rats. Sci Rep. 2016;6:20683.
Reid DT, Eller LK, Nettleton JE, Reimer RA. Postnatal prebiotic fibre intake mitigates some detrimental metabolic outcomes of early overnutrition in rats. Eur J Nutr. 2016;55:2399-409.
Yang J, Summanen PH, Henning SM, Hsu M, Lam H, Huang J, et al. Xylooligosaccharide supplementation alters gut bacteria in both healthy and prediabetic adults: a pilot study. Front Physiol. 2015;6:216.
Tilg H, Moschen AR. Food, immunity, and the microbiome. Gastroenterology. 2015;148:1107-19.
Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39:372-85.
Ikuta T, Kurosumi M, Yatsuoka T, Nishimura Y. Tissue distribution of aryl hydrocarbon receptor in the intestine: Implication of putative roles in tumor suppression. Exp Cell Res. 2016;343:126-34.
Esser C, Rannug A. The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacol Rev. 2015;67:259-79.
Murray IA, Patterson AD, Perdew GH. Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nat Rev Cancer. 2014;14:801-14.
Hartiala J, Bennett BJ, Tang WH, Wang Z, Stewart AF, Roberts R, et al. Comparative genome-wide association studies in mice and humans for trimethylamine N-oxide, a proatherogenic metabolite of choline and L carnitine. Arterioscler Thromb Vasc Biol. 2014;34: 1307-13.
Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57-63.
Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576-85.
Bernstein C, Holubec H, Bhattacharyya AK, Nguyen H, Payne CM, Zaitlin B, et al. Carcinogenicity of deoxycholate, a secondary bile acid. Arch Toxicol. 2011;85: 863-71.
Saracut C, Molnar C, Russu C, Todoran N, Vlase L, Turdean S, et al. Secondary bile acids effects in colon pathology. Experimental mice study. Acta Cir Bras. 2015;30:624-31.