2018, Número 5
<< Anterior Siguiente >>
Rev Fac Med UNAM 2018; 61 (5)
Síndrome de jet lag o cambio de zonas de tiempo
Ubaldo Reyes LM, Salin-Pascual RJ, Ángeles-Castellanos M
Idioma: Español
Referencias bibliográficas: 39
Paginas: 6-13
Archivo PDF: 2341.17 Kb.
RESUMEN
Nuestro planeta, así como la vida que en él se desarrolla, se encuentra
en constante movimiento. Los ritmos geofísicos influyen
en la actividad de los organismos, de tal manera que los seres
vivos han desarrollado mecanismos adaptativos para poder responder
a las variaciones diarias del medio ambiente. El sistema
circadiano es el responsable de responder a estas variaciones
cíclicas ambientales. Cuando se modifican las señales ambientales,
como en un viaje que implica atravesar varias zonas horarias,
se ocasionan cambios fisiológicos que han llevado a buscar
estrategias para contrarrestar los síntomas que se presentan;
estas estrategias incluyen el ejercicio programado, la exposición
a la luz brillante, la melatonina y la alimentación programada.
REFERENCIAS (EN ESTE ARTÍCULO)
Klein DC, Moore RY, Reppert SM. e Mind’s Clock. New York. Oxford University Press, 1991.
Buijs RM, Hou YX, Shinn S, Renaud LP. Ultrastructural evidence for intra- and extranuclear projections of GABAergic neurons of the suprachiasmatic nucleus. J Comp Neurol. 1994;340:381-91.
Takahashi JS, Hong HK, Ki CH, McDearmon EL. e genetics of mammalian circadian order and disorder: implications for physiology and disease. Nature reviews genetics. 2008;9:764-75.
Inouye SIT & Kawamura H. Persistence of circadian rhythmicity in a mammalian hypothalamic ‘island’ containing the suprachiasmatic nucleus. Proc Natl Acad Sci. 1979; 76:5962-6.
Schwartz WJ, Davidsen LC, Smith CB. In vivo metabolic activity of a putative circadian oscillator, the rat suprachiasmatic nucleus. J Comp Neurol. 1980;189(1):157-67.
Inouye SIT & Shibata S. Neurochemical organization of circadian rhythm in the suprachiasmatic nucleus. Neurosci Res. 1994;20:109-30.
Pittendrigh C. Circadian system: Entrainment. Handbook of Behavioral Neurobiology. Vol. 4: Biological Rhythms (Jurgen Aschoff, Ed) New York: Plenium Press; 1981. pp. 95-124.
Ruby NF, Brennan TJ, Xie X, Cao V, Franken P, Heller HC, et al. Role of melanopsin in circadian responses to light. Science. 2002,298:2211-3.
Daan S, Pittendrigh CS. A functional analysis of circadian pacemakers in nocturnal rodents. II. e variability of phase response curves. J Comp Physiol. 1976;106:253-66.
Caldelas I, Poirel VJ, Sicard B, Pevet P, Challet E. Circadian profile and photic regulation of clock genes in the suprachiasmatic nucleus of a diurnal mammal Arvicanthis ansorgei. Neuroscience. 2003;116:583-91.
Takahashi JS, DeCoursey PJ, Bauman L, Menaker M. Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature. 1984;308:186-8.
Bass J. Circadian topology of metabolism. Nature. 2012; 491(7424):348-56.
Aschoff J. Freerunning and entrained circadian rhythms. En: Aschoff J (Ed). Biological Rhythms; Handbook of Behavioral Neurobiology. Vol. 4. New York: Plenum Press; 1981. pp. 81-93.
Rockwell DA. The “Jet Lag” syndrome. West J Med. 1975; 122(5):419.
Waterhouse J, Jones K, edwards B, Harrison Y, Nevill A, Reilly T. Lack of evidence for a marked endogenous component determining food intake in humans during forced desynchronization. Chronobiol Int. 2004;21:443-66.
Mumford L. The relevance of circadian rhythms for human welfare. En: Dunlap JC, Loros JJ, DeCoursey PJ (eds.). Chronobiology Biological Timekeeping. Massachusetts: Sinauer Press; 2004. pp. 325-56.
Escobar C, Ángeles-Castellanos M. El tiempo para comer. Ciencia, revista de la academia mexicana de ciencias. 2007:59(1):32-8.
American Academy of Sleep Medicine. International Classification of Sleep Disorders, 3er ed. Dariel Il., American Academy of Sleep Medicine, 2014.
Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science. 2000;288:682-5.
Nagano M, Aadachi A, Nakahama KI, Nakamuta T, Tamada M, Meyer-Bernstein E, et al. An abrupt shift in the day/night cycle causes desynchrony in the mammalian circadian center. J Neuroscience. 2003;23:6141-51.
Ángeles-Castellanos M, Amaya JM, Salgado-Delgado R, Buijs RM, Escobar C. Scheduled food hastens re-entrainment more than melatonin does after a 6-h phase advance of the light-dark cycle in rats. J Biol Rhythms. 2011;26, 324-34.
Vansteensel MJ, Yamazaki S, Albus H, Deboer T, Block GD, Meijer JH. Dissociation between circadian Per1 and neuronal and behavioral rhythms following a shifted environmental cycle. Curr Biol. 2003;13(17):1538-42.
Reddy AB, Field MD, Maywood ES, Hastings MH. Differential resynchronization of circadian clock gene expression within the suprachiasmatic nuclei of mice subjected to experimental jet lag. J Neurosci. 2002;22:7326-30.
Nakamura W, Yamazaki S, Takasu NN, Mishima K, Block GD. Differential response of Period 1 expression within the suprachiasmatic nucleus. J Neurosci. 2005;25:5481-7.
Zylka MJ, Shearman LP, Weaver DR, Reppert SM. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron. 1998;20(6):1103-10.
Yan L, Silver R. Resetting the brain clock: time course and localization of mPER1 and mPER2 protein expression in suprachiasmatic nuclei during phase shifts. Eur J Neurosci. 2004;19(4):1105-9.
Abe M, Herzog ED, Yamazaki S, Straume M, Tei H, Sakaki Y, et al. Circadian rhythms in isolated brain regions. J Neurosci. 2002;22:350-6.
Davidson AJ, Castañon-Cervantes O, Leise TL, Molyneux PC, Harrington ME. Visualizing jet lag in the mouse suprachiasmatic nucleus and peripheral circadian timing system. Eur J Neurosci. 2009;29:171-80.
Van Reeth O, Sturis J, Byrne MM, Blackman JD, L’Hermite- Baleriaux M, Leproult R, et al. Nocturnal exercise phase delays circadian rhythms of melatonin and thyrotropin secretion in normal men. Am J Physiol. 1994;266: E964-E974.
Burgess H, Crowley S, Gazda C, Fogg L, Eastman C. Preflight adjustment to eastward travel: 3 days of advancing sleep with and without morning bright light. J Biol Rhythms. 2003;18:318-28.
Arendt J, Skene DJ. Melatonin as a chronobiotic. Sleep Med Rev. 2005;9:25-39.
Waterhouse J, Reilly T, Atkinson G, Edwards B. Jet lag: trends and coping strategies. Lancet. 2007;369(9567):1117-29.
Kiessling S, Eichele G, Oster H. Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag. J Clin Invest. 2010;120(7):2600-9.
Castillo C, Molyneux P, Carlson R, Harrington ME. Restricted Wheel Access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2 mice. Neuroscience. 2011;19(182):169-76.
Ubaldo-Reyes L, Buijs R, Escobar C, Angeles-Castellanos. Scheduled meal accelerates entrainment to a 6 hours phase advance by shifting central and peripheral oscillations in rats. European Journal of Neuroscience. 2017:46(3):1875- 86.
An S, Harang R, Meeker K, Granados-Fuentes D, Tsai CA, Mazuski C, et al. A neuropeptide speeds circadian entrainment by reducing intercellular synchrony. Proc Natl Acad Sci USA. 2013;110:e4355-e4361.
Yamaguchi Y, Suzuki T, Mizoro Y, Kori H, Okada K, Chen Y, et al. Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science. 2013 Oct 4;342(6154):85-90.
Nicolaidis S. Metabolic mechanism of wakefulness (and hunger) and sleep (and satiety): role of adenosine triphosphate and hypocretin and other peptides. Metabolism. 2006;55(10Suppl2):S24-29.
Guan Z, Vgontzas AN, Bixler EO, Fang J. Sleep is increased by weight gain and decreased by weight loss in mice. Sleep. 2008;5:627-33.