2018, Número 3
<< Anterior Siguiente >>
AbanicoVet 2018; 8 (3)
Productividad de vacas lecheras Holstein sin sombra en dos épocas del año
Beauregard-García J, Prado-Rebolledo O, García-Márquez L, García-Casillas A, Macedo-Barragán R, Hernández-Rivera J
Idioma: Español
Referencias bibliográficas: 44
Paginas: 51-67
Archivo PDF: 756.49 Kb.
RESUMEN
Con el propósito de evaluar el efecto de época sobre la productividad de vacas lecheras Holstein, 10 vacas fueron asignadas a uno de dos tratamientos, vacas en invierno (Inv) y vacas en verano (Ver). El estudio tuvo una duración de 70 días (d) divididos en dos periodos de cinco semanas, respectivamente. Los datos fueron colectados tres veces por semana. Los animales fueron alimentados bajo el mismo régimen alimenticio en ambas épocas, a partir de una ración integral a base de concentrado, heno de alfalfa y silo de maíz. El índice de temperatura-humedad máximo fue de 70 y 75 unidades durante el invierno y verano, respectivamente. Las vacas Inv tuvieron menor producción de leche (P‹0.05), tasa respiratoria y temperatura rectal que vacas Ver. Las temperaturas de costado derecho y nalga en vacas Inv fueron menores (P‹0.05), respecto a vacas Ver (P‹0.05). Las temperaturas de agua de bebida, piso y ambiental a través del bulbo negro fueron consistentemente menores (P‹0.05) durante la época de invierno con respecto al verano. Las vacas Ver presentaron estrés calórico ligero e incrementaron 24% más la producción de leche respecto a vacas Inv, pero no mejoraron la calidad en leche. El uso de sombras durante el verano, puede mejorar el estado fisiológico y calidad de la leche en vacas lecheras en lactación.
REFERENCIAS (EN ESTE ARTÍCULO)
AHM. 2018. Control de producción. AHM Asociación Holstein de México A.C. Disponible: http://www.holstein.mx/srv_con.html.
AKYUZ A, Boyaci S, Çayli A. 2010. Determination of critical period for dairy cows using temperature humidity index. Journal of Animal and Veterinary Advances. 9:1824-1827. ISSN: 1680-5593. DOI: 10.3923/javaa.2010.1824.1827.
AMMER S, Lambertz C, Soosten D, Zimmer K, Meyer U, Dänicke S, Gauly M. 2018. Impact of diet composition and temperature–humidity index on water and dry matter intake of high‐yielding dairy cows. Journal of Animal Physiology and Animal Nutrition. 102(1):103-113. ISSN: 0931-2439. DOI: 10.1111/jpn.12664.
ANZURES-OLVERA F, Macías-Cruz U, Álvarez-Valenzuela F, Correa-Calderón A, Díaz-Molina R, Hernández-Rivera J, Avendaño-Reyes L. 2015. Efecto de época del año (verano vs. invierno) en variables fisiológicas, producción de leche y capacidad antioxidante de vacas Holstein en una zona árida del noroeste de México. Archivos de Medicina Veterinaria. 47:15-20. ISSN: 0301-732X. DOI: 10.4067/S0301-732X2015000100004.
ARIAS RA, Herrera C, Larraín R, González F, Mader TL, Velásquez A. 2018. Physiological and behavioural response of two dairy cows genotypes during summertime in the central region of Chile. Austral Journal Of Veterinary Sciences. 50:9-14. ISSN: 0719-8132. DOI: 10.4067/S0719-81322018000100103.
AVENDAÑO-REYES L. 2012. Heat stress management for milk production in arid zones. Milk Production-An Up-to-Date Overview of Animal Nutrition, Management and Health. DOI: 10.5772/51299.
AVENDAÑO RL, Hernández RJA, Álvarez VFD, Macías CU, Díaz MR, Correa CA, Robinson PH, Fadel JG. 2012. Physiological and productive responses of multiparous lactating Holstein cows exposed to short-term cooling during severe summer conditions in an arid region of Mexico. International Journal of Biometeorology. 56(6):993-999. ISSN: 1432-1254. DOI: 10.1007/s00484-011-0510-x.
BERMAN A, Horovitz T. 2012. Radiant heat loss, an unexploited path for heat stress reduction in shaded cattle. Journal of Dairy Science. 95(6):3021-3031. ISSN: 0022-0302. DOI: 10.3168/jds.2011-4844.
COLLIER RJ, Xiao Y, Bauman DE. 2017. Chapter 1 - Regulation of factors affecting milk yield. En: Nutrients in Dairy and their Implications on Health and Disease. Academic Press. 3-17 p. ISBN: 978-0-12-809762-5.
CORREA-CALDERÓN A, Gómez-Álvarez C, Avendaño-Reyes L, Diaz-Molina R, Medina-Cervantes S, Rivera-Acuña F, Luna-Nevárez P, Macias-Cruz U. 2014. Efecto de la suplementación de progesterona y enfriamiento artificial post-inseminación sobre la eficiencia reproductiva de vaquillas Holstein durante el verano. Archivos de Medicina Veterinaria. 46:189-196. ISSN: 0301-732X. DOI: 10.4067/S0301-732X2014000200004.
DALCIN VC, Fischer V, Daltro DdS, Alfonzo EPM, Stumpf MT, Kolling GJ, Silva MVGBd, McManus C. 2016. Physiological parameters for thermal stress in dairy cattle. Revista Brasileira de Zootecnia. 45:458-465. ISSN: 1516-3598. DOI: 10.1590/S1806-92902016000800006.
EIGENBERG RA, Brown-Brandl TM, Nienaber JA. 2010. Shade material evaluation using a cattle response model and meteorological instrumentation. International Journal of Biometeorology. 54(6):601-607. ISSN: 0020-7128. DOI: 10.1007/s00484-010-0381-6.
FABRIS TF, Laporta J, Corra FN, Torres YM, Kirk DJ, McLean DJ, Chapman JD, Dahl GE. 2017. Effect of nutritional immunomodulation and heat stress during the dry period on subsequent performance of cows. Journal of Dairy Science. 100(8):6733-6742. ISSN: 1525-3198 (Electronic) 0022-0302 (Linking). DOI: 10.3168/jds.2016-12313.
FRANCIS JA, Vavrus SJ. 2012. Evidence linking Arctic amplification to extreme weather in mid‐latitudes. Geophysical Research Letters. 39(6). ISSN: 1944-8007. DOI: 10.1029/2012GL051000.
HABEEB A, Gad A, EL-Tarabany A, Atta M. 2018. Negative effects of heat stress on growth and milk production of farm animals. Journal of Animal Husbandry and Dairy Science. 2(1):1-12. Disponible: http://www.sryahwapublications.com/journal-of-animal-husbandry-and-dairy-science/pdf/v2-i1/1.pdf
HAHN GL. 1999. Dynamic responses of cattle to thermal heat loads. Journal of Animal Science. 77(suppl_2):10-20. ISSN: 0021-8812. DOI: 10.2527/1997.77suppl_210x.
HÄUBI SEGURA CU, Gutiérrez Lozano JL. 2015. Evaluación de unidades familiares de producción lechera en Aguascalientes: estrategias para incrementar su producción y rentabilidad. Avances en Investigación Agropecuaria. 19(2):7-34. ISSN: 0188-7890. Disponible: http://www.redalyc.org/html/837/83742619002/.
HERNÁNDEZ RJA, Álvarez VFD, Correa CA, Macías CU, Fadel JG, Robinson PH, Avendaño RL. 2011. Effect of short-term cooling on physiological and productive responses of primiparous Holstein cows exposed to elevated ambient temperatures. Acta Agriculturae Scandinavica, Section A — Animal Science. 61(1):34-39. ISSN: 0906-4702. DOI: 10.1080/09064702.2011.558910.
IGONO MO, Bjotvedt G, Sanford-Crane HT. 1992. Environmental profile and critical temperature effects on milk production of Holstein cows in desert climate. International Journal of Biometeorology. 36(2):77-87. ISSN: 1432-1254. DOI: 10.1007/bf01208917.
INEGI. 2009. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. Clave geoestadística 22011. Formato electrónico. Disponible: http://www.beta.inegi.org.mx/app/biblioteca/ficha.html?upc=702825293116.
KAMAL R, Dutt T, Patel M, Dey A, Chandran PC, Bharti PK, Barari SK. 2016a. Behavioural, biochemical and hormonal responses of heat-stressed crossbred calves to different shade materials. Journal of Applied Animal Research. 44(1):347-354. ISSN: 0971-2119. DOI: 10.1080/09712119.2015.1074076.
KAMAL R, Dutt T, Patel B, Singh G, Chandran P, Dey A, Barari S. 2016b. Effect of shade materials on rectal temperature, respiration rate and body surface temperature of crossbred calves during rainy season. The Indian Journal of Animal Sciences. 86(1). ISSN: 0367-8318.
KAMAL R, Dutt T, Patel M, Dey A, Bharti PK, Chandran PC. 2018. Heat stress and effect of shade materials on hormonal and behavior response of dairy cattle: a review. Tropical Animal Health and Production.1-6. ISSN: 0049-4747. DOI: 10.1007/s11250-018-1542-6.
KRISHNAN G, Bagath M, Pragna P, Vidya MK, Aleena J, Archana PR, Sejian V, Bhatta R. 2017. Mitigation of the heat stress impact in livestock reproduction. Theriogenology. DOI: 10.5772/intechopen.69091.
MCMANUS C, Castanheira M, Paiva SR, Louvandini H, Fioravanti MCS, Paludo GR, Bianchini E, Corrêa PS. 2011. Use of multivariate analyses for determining heat tolerance in Brazilian cattle. Tropical Animal Health and Production. 43(3):623-630. ISSN: 0049-4747. DOI: 10.1007/s11250-010-9742-8.
NOAA. 2012. Billion-dollar weather/climate disasters, distribution and change: 2000 to 2010, summary statistics. NOAA’s National Climatic Data Center. Disponible: http://www.ncdc.noaa.gov/billions/summary-stats.
NRC. 2001. Nutrient requirements of dairy cattle. En. Washington, DC: The National Academies Pressp. ISBN: 978-0-309-06997-7.
PAREKH H. 1986. A new formula for FCM (3.5%) fat [Fat-corrected milk]. Indian Journal of Animal Sciences (India). ISSN: 0367-8318.
POLSKY L, von Keyserlingk MAG. 2017. Invited review: Effects of heat stress on dairy cattle welfare. Journal of Dairy Science. 100(11):8645-8657. ISSN: 0022-0302. DOI: 10.3168/jds.2017-12651.
RHOADS RP, Baumgard LH, Suagee JK, Sanders SR. 2013. Nutritional interventions to alleviate the negative consequences of heat stress. Advances in Nutrition. 4(3):267-276. ISSN: 2161-8313. DOI: 10.3945/an.112.003376.
SAS. 2004. SAS/STAT User’s guide software released. 9.12, v. SAS Institute Inc. Cary, NC.
SCHÜTZ KE, Cox NR, Tucker CB. 2014. A field study of the behavioral and physiological effects of varying amounts of shade for lactating cows at pasture. Journal of Dairy Science. 97(6):3599-3605. ISSN: 0022-0302. DOI: 10.3168/jds.2013-7649.
SEVI A, Rotunno T, Di Caterina R, Muscio A. 2002. Fatty acid composition of ewe milk as affected by solar radiation and high ambient temperature. Journal of dairy Research. 69(2):181-194. ISSN: 1469-7629. DOI: 10.1017/S0022029902005447.
SILANIKOVE N, Koluman N. 2015. Impact of climate change on the dairy industry in temperate zones: Predications on the overall negative impact and on the positive role of dairy goats in adaptation to earth warming. Small Ruminant Research. 123(1):27-34. ISSN: 0921-4488. DOI: 10.1016/j.smallrumres.2014.11.005.
TAO S, Dahl GE. 2013. Heat stress effects during late gestation on dry cows and their calves. Journal of Dairy Science. 96(7):4079-4093. ISSN: 0022-0302. DOI: 10.3168/jds.2012-6278.
THOMAS CK, Pearson RA. 1986. Effects of ambient temperature and head cooling on energy expenditure, food intake and heat tolerance of Brahman and Brahman × Friesian cattle working on treadmills. Animal Science. 43(1):83-90. ISSN: 1357-7298. DOI: 10.1017/S0003356100018353.
TRESOLDI G, Schütz KE, Tucker CB. 2018. Cooling cows with sprinklers: Spray duration affects physiological responses to heat load. Journal of Dairy Science. 101(5):4412-4423. ISSN: 0022-0302. DOI: 10.3168/jds.2017-13806.
TYRRELL HF, Reid JT. 1965. Prediction of the energy value of cow's milk. Journal of Dairy Science. 48(9):1215-1223. ISSN: 0022-0302. DOI: 10.3168/jds.S0022-0302(65)88430-2.
ULVSHAMMAR K. 2014. Effects of shade on milk production in Swedish dairy cows on pasture. Disponible: https://stud.epsilon.slu.se/6604/7/ulvshammar_k_140416.pdf.
VAN LAER E, Tuyttens FA, Ampe B, Sonck B, Moons CP, Vandaele L. 2015. Effect of summer conditions and shade on the production and metabolism of Holstein dairy cows on pasture in temperate climate. Animal. 9(9):1547-1558. ISSN: 1751-732X (Electronic) 1751-7311 (Linking). DOI: 10.1017/S1751731115000816.
VEISSIER I, Van laer E, Palme R, Moons CPH, Ampe B, Sonck B, Andanson S, Tuyttens FAM. 2018. Heat stress in cows at pasture and benefit of shade in a temperate climate region. International Journal of Biometeorology. 62(4):585-595. ISSN: 1432-1254. DOI: 10.1007/s00484-017-1468-0.
WEST JW. 2003. Effects of heat-stress on production in dairy cattle. Journal of Dairy Science. 86(6):2131-2144. ISSN: 0022-0302 (Print) 0022-0302 (Linking). DOI: 10.3168/jds.S0022-0302(03)73803-X.
WILDMAN EE, Jones GM, Wagner PE, Boman RL, Troutt HF Jr, Lesch TN. 1982. A dairy cow body condition scoring system and its relationship to selected production characteristics. Journal of Dairy Science. 65(3):495-501. ISSN: 0022-0302. DOI: 10.3168/jds.S0022-0302(82)82223-6.
WOOD PDP. 1967. Algebraic Model of the Lactation Curve in Cattle. Nature. 216:164. ISSN: 1476-4687. DOI: 10.1038/216164a0.