2018, Número 4
<< Anterior Siguiente >>
Rev Fac Med UNAM 2018; 61 (4)
Inmunidad e inflamación en el proceso quirúrgico
López-Bago A, González RRE, Ruíz SJE, Rivera JJ
Idioma: Español
Referencias bibliográficas: 28
Paginas: 7-15
Archivo PDF: 238.07 Kb.
RESUMEN
Todo acto quirúrgico implica un traumatismo directo al
organismo, porque expone moléculas que normalmente
no se encuentran en el medio extracelular, a las cuales el
sistema inmune puede reconocer, e iniciará una respuesta
inflamatoria aguda, con la consecuente producción de proteínas
mensajeras llamadas citocinas proinflamatorias. Éstas
se encargan de generar cambios en el tejido conectivo y
el sistema vascular, lo que origina una vasodilatación que
ocasiona la salida de líquido al espacio extracelular, lo que
permitirá llegar al sitio de la lesión a los leucocitos y proteínas
efectoras solubles, con el fin de responder al estímulo agresor
mediante mecanismos innatos y adaptativos. Una vez que el
estímulo agresor ha sido controlado, la respuesta fisiológica
normal llevará a la producción de mediadores antiinflamatorios
que permitan realizar una adecuada reparación tisular
para llevar a los tejidos lesionados por el proceso quirúrgico
a su estado normal.
REFERENCIAS (EN ESTE ARTÍCULO)
Abbas AK, Litchman AH, Pillai S. Cellular and molecular immunology. 7th Philadelphia: Elsevier; 2012.
Kumar V, Abbas AK, Fausto N, Aster JC. Robbins y Cotran. Patología Estructural y Funcional. 8va. Barcelona: Elsevier; 2010.
Fitch K, Engel T, Bochner A. Cost Differences Between Open and Minimally Invasive Surgery. Manag Care. 2015; 24(9):40-8.
Terrence MF, Joseph AL, Bijan JB, Candace LG. Comparison of the clinical and economic outcomes between open and minimally invasive appendectomy and colectomy: evidence from a large commercial payer database. Surg Endosc. 2010;24:845-53.
Skjold Kingo P, Palmfeldt J, Nørregaard R, Borre M, Jensen JB. Perioperative Systemic Inflammatory Response following Robot-Assisted Laparoscopic Cystectomy vs. Open Mini-Laparotomy Cystectomy: A Prospective Study. Urol Int. 2017;1:1-10.
Jess P, Schultz K, Bendtzen K, Nielsen OH. Systemic inflammatory responses during laparoscopic and open inguinal hernia repair: a randomised prospective study. Eur J Surg. 2000;166(7):540-4.
Rubartelli A, Lotze MT. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol. 2007;28(19):429-36.
Manson J, Thiemermann C, Brohi K. Trauma alarmins as activators of damage-induced inflammation. Br J Surg. 2012;99Suppl 1:12-20.
Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464(7285):104-7.
Arias JI, Aller MA, Arias J. Surgical inflammation: a pathophysiological rainbow. Journal of transl med. 2009;7:19.
Jawa RS, Anillo S, Huntoon K, Baumann H, Kulaylat M. Interleukin-6 in surgery, trauma, and critical care part II: clinical implications. Journal of intensive care medicine. 2011;26(2):73-87.
Kawamura T, Wakusawa R, Katsuya I. Interleukin-10 and interleukin-1 receptor antagonists increase during cardiac surgery. Can J Anaesth. 1997;44(1):38-42.
Stow JL, Murray RZ. Intracellular trafficking and secretion of inflammatory cytokines. Cytokine & growth factor reviews. 2013;24(3):227-39.
Sims JE, Smith DE. The IL-1 family: regulators of immunity. Nature reviews Immunology. 2010;10(2):89-102.
Khalil AA, Hall JC, Aziz FA, Price P. Tumour necrosis factor: implications for surgical patients. ANZ journal of surgery. 2006;76(11):1010-6.
Cook-Mills JM, Deem TL. Active participation of endothelial cells in inflammation. J Leukoc Biol. 2005;77(4):487-95.
Sumpio BE, Riley JT, Dardik A. Cells in focus: endothelial cell. Int J Biochem Cell Biol. 2002 Dec;34(12):1508-12.
von Hundelshausen P, Weber C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circulation research. 2007;100(1):27-40.
Borregaard N, Sorensen OE, Theilgaard-Monch K. Neutrophil granules: a library of innate immunity proteins. Trends in immunology. 2007;28(8):340-5.
Duffield JS. The inflammatory macrophage: a story of Jekyll and Hyde. Clinical science. 2003;104(1):27-38.
Shimaoka M, Hosotsubo K, Sugimoto M, Sakaue G, Taenak N, Yoshiya I. The influence of surgical Stress on T Cells: Early phase Lymphocyte Activation. Anest Analog. 1998 (87):1431-5.
Shimotakahara A, Kuebler JF, Vieten G, Kos M, Metzelder ML, Ure BM. Carbon dioxide directly suppresses spontaneous migration, chemotaxis, and free radical production of human neutrophils. Surg Endosc. 2008;22(8):1813-7.
West MA, Hackam DJ, Baker J, Rodriguez JL, Bellingham J, Rotstein OD. Mechanism of decreased in vitro murine macrophage cytokine release after exposure to carbon dioxide: relevance to laparoscopic surgery. Ann Surg. 1997 Aug;226(2):179-90.
Ure BM, Niewold TA, Bax NM, Ham M, van der Zee DC, Essen GJ. Peritoneal, systemic, and distant organ inflammatory responses are reduced by a laparoscopic approach and carbon dioxide versus air. Surg Endosc. 2002;16(5): 836-42.
Choileain N, Redmond P. Cell Response to Surgery. Arch Surg. 2006;141: 1132-40.
Lord JM, Midwinter MJ, Chen YF, Belli A, Brohi K, Kovacs EJ, et al. The systemic immune response to trauma: an overview of pathophysiology and treatment. Lancet. 2014;384(9952):1455-65.
Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13:260-68.
Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sever Sepsis and Septic Shock: 2012. Crit Care Med. 2013;41(2):580-637.