2018, Número 3
Aplicaciones odontológicas de las células madre pulpares de dientes temporales y permanentes. Revisión de estudios in vivo
Guadarrama PO, Guadarrama Quiroz LJ, Robles Bermeo NL
Idioma: Español
Referencias bibliográficas: 63
Paginas: 127-134
Archivo PDF: 256.68 Kb.
RESUMEN
La terapia con células madre ha atraído la atención médica como una alternativa al trasplante de órganos considerando las características que presentan estas células
in vivo. En los últimos años la odontología ha despertado gran interés en el potencial terapéutico de las células madre obtenidas del tejido pulpar dental. La principal característica de estas células es su gran capacidad de proliferación, multidiferenciación, autorrenovación y la habilidad de diferenciarse en varios tipos de células como los odontoblastos, osteoblastos, adipocitos, condrocitos y células neurales. Acerca de las células multipotenciales existe una alta probabilidad en la regeneración de tejidos dentales así como la sustitución de materiales, los cuales son utilizados actualmente en odontología por materiales biológicos. Estudios y experimentos científicos in vivo han demostrado la utilidad y viabilidad de las células madre pulpares para el tratamiento de lesiones bucales así como el potencial terapéutico y la regeneración de nuevos tejidos. En la revisión se incluyen estudios
in vivo sobre la aplicación odontológica de las células madre pulpares de los órganos dentarios temporales y permanentes. También se muestra el potencial de regeneración tisular, beneficios y aplicaciones clínicas con la finalidad de proporcionar información puntual a los lectores acerca de la seguridad y los alcances de la terapia con estas células enfocadas en la regeneración, reparación o reemplazo de tejidos y órganos de la cavidad oral.
REFERENCIAS (EN ESTE ARTÍCULO)
Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000; 97 (25): 13625-13630.
Stem Cells: Scientific progress and Future research Directions. National Institutes of Health and Human Services Appendix. Glosary and Terms. 2001.
Rendón J, Jiménez LP, Urrego PA. Células madre en odontología. Rev CES Odont. 2011; 24 (1): 51-58.
Valencia-Hitte R, Espinosa-Fernández R, Saadia M, Velasco NJ, Nario H. Panorama actual de las células madre de la pulpa de dientes primarios y permanentes. RODYB. 2013; 2 (2): 1-33.
Mérida I. Bioingeniería y su aplicación en la Ortodoncia. Revista Latinoamericana de Ortodoncia y Odontopediatría. 2011; 6: 1-19.
Romero-Jasso G, Aldape-Barrio B. Bioingeniería dental, ¿El futuro de la terapia en odontología? Rev ADM. 2011; 68 (4): 169-174.
Telles PD, Machado MA, Sakai VT, Nör JE. Pulp tissue from primary teeth: new source of stem cells. J Appl Oral Sci. 2011; 19 (3): 189-194.
Batouli S, Miura M, Brahim J, Tsutsui TW, Fisher LW, Gronthos S et al. Comparison of stem-cell-mediated osteogenesis and dentinogenesis. J Dent Res. 2003; 82 (12): 976-981.
Murray PE, Garcia-Godoy F, Hargreaves KM. Regenerative endodontics: a review of current status and a call for action. J Endod. 2007; 33 (4): 377-390.
Huang GT. A paradigm shift in endodontic management of immature teeth: conservation of stem cells for regeneration. J Dent. 2008; 36 (6): 379-386.
Stem Cells: Scientific progress and Future research Directions. Chapter 1. The stem cells. National Institutes of Health. Department of Health and Human Services. 2001.
Sadler TW, Langman J. Embriología médica con orientación clínica. Buenos Aires: Médica Panamericana; 2007. pp. 33-46.
Gómez de Ferraris ME, Campos-Muñoz A. Histología, embriología e ingeniería tisular bucodental. México: Médica Panamericana; 2009. pp. 28-135.
Rose FR, Oreffo RO. Bone tissue engineering: hope vs hype. Biochem Biophys Res Commun. 2002; 292 (1): 1-7.
Nakashima M, Iohara K, Murakami M. Dental pulp stem cells and regeneration. Endodontic Topics. 2013; 28 (1): 38-50.
Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003; 100 (10): 5807-5812.
Estrela C, Alencar AH, Kitten GT, Vencio EF, Gava E. Mesenchymal stem cells in the dental tissues: perspectives for tissue regeneration. Braz Dent J. 2011; 22 (2): 91-98.
Kashyap R. SHED - basic structure for stem cell research. J Clin Diagn Res. 2015; 9 (3): ZE07-ZE09.
d’Aquino R, De Rosa A, Lanza V, Tirino V, Laino L, Graziano A et al. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater. 2009; 18: 75-83.
Rosa V, Botero TM, Nör JE. Regenerative endodontics in light of the stem cell paradigm. Int Dent J. 2011; 61 Suppl 1: 23-28.
Demarco FF, Conde MC, Cavalcanti BN, Casagrande L, Sakai VT, Nör JE. Dental pulp tissue engineering. Braz Dent J. 2011; 22 (1): 3-13.
Gong T, Heng BC, Lo EC, Zhang C. Current advance and future prospects of tissue engineering approach to dentin/pulp regenerative therapy. Stem Cells Int. 2016; 2016: 9204574.
La Noce M, Paino F, Spina A, Naddeo P, Montella R, Desiderio V et al. Dental pulp stem cells: state of the art and suggestions for a true translation of research into therapy. J Dent. 2014; 42 (7): 761-768.
Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S et al. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod. 2008; 34 (8): 962-969.
Sakai VT, Zhang Z, Dong Z, Neiva KG, Machado MA, Shi S et al. SHED differentiate into functional odontoblasts and endothelium. J Dent Res. 2010; 89 (8): 791-796.
Huang GT, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS et al. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng Part A. 2010; 16 (2): 605-615.
Yu J, Wang Y, Deng Z, Tang L, Li Y, Shi J et al. Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell. 2007; 99 (8): 465-474.
Jung J, Kim JW, Moon HJ, Hong JY, Hyun JK. Characterization of neurogenic potential of dental pulp stem cells cultured in xeno/serum-free condition: in vitro and in vivo assessment. Stem Cells Int. 2016; 2016: 6921097.
Lacerda-Pinheiro S, Dimitrova-Nakov S, Harichane Y, Souyri M, Petit-Cocault L, Legrès L et al. Concomitant multipotent and unipotent dental pulp progenitors and their respective contribution to mineralised tissue formation. Eur Cell Mater. 2012; 23: 371-386.
Dhillon H, Kaushik M, Sharma R. Regenerative endodontics-creating new horizons. J Biomed Mater Res B Appl Biomater. 2016; 104 (4): 676-685.
Dissanayaka WL, Hargreaves KM, Jin L, Samaranayake LP, Zhang C. The interplay of dental pulp stem cells and endothelial cells in an injectable peptide hydrogel on angiogenesis and pulp regeneration in vivo. Tissue Eng Part A. 2015; 21 (3-4): 550-563.
Kim JH, Kim GH, Kim JW, Pyeon HJ, Lee JC, Lee G et al. In vivo angiogenic capacity of stem cells from human exfoliated deciduous teeth with human umbilical vein endothelial cells. Mol Cells. 2016; 39 (11): 790-796.
Chang B, Ahuja N, Ma C, Liu X. Injectable scaffolds: Preparation and application in dental and craniofacial regeneration. Mater Sci Eng R Rep. 2017; 111: 1-26.
Wang YY, Chatzistavrou X, Faulk D, Badylak S, Zheng L, Papagerakis S et al. Biological and bactericidal properties of Ag-doped bioactive glass in a natural extracellular matrix hydrogel with potential application in dentistry. Eur Cell Mater. 2015; 29: 342-355.
Kim S, Shin SJ, Song Y, Kim E. In vivo experiments with dental pulp stem cells for pulp-dentin complex regeneration. Mediators Inflamm. 2015; 2015: 409347.
Giuliani A, Manescu A, Langer M, Rustichelli F, Desiderio V, Paino F et al. Three years after transplants in human mandibles, histological and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone: biological and clinical implications. Stem Cells Transl Med. 2013; 2 (4): 316-324.
Nakashima M, Iohara K, Murakami M, Nakamura H, Sato Y, Ariji Y et al. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study. Stem Cell Res Ther. 2017; 8 (1): 61.
Yamada Y. A clinical study of bone regeneration using autologous dental pulp stem cells. NIPH Clinical Trials Search. 2015. Disponible en: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000019174
Wang S. Periodontal regeneration of chronic periodontal disease patients receiving stem cells injection therapy. ClinicalTrials.gov. A service of the U.S. National Institutes of Health. 2015. Disponible en: https://clinicaltrials.gov/ct2/show/NCT02523651
Yan J. Revitalization of immature permanent teeth with necrotic pulps using SHED cells. ClinicalTrials.gov. A service of the U.S. National Institutes of Health. 2013. Disponible en: https://www.clinicaltrials.gov/ct2/show/NCT01814436
Sai S. Effect on allogenic mesenchymal stem cells on osseointegration of dental implants. ClinicalTrials.gov. A service of the U.S. National Institutes of Health. 2016. Disponible en: https://clinicaltrials.gov/ct2/show/NCT02731586
Franco D. Use of mesenchymal stem cells for alveolar bone tissue engineering for cleft lip and palate patients. ClinicalTrials.gov. A service of the U.S. National Institutes of Health. 2013. Disponible en: https://clinicaltrials.gov/ct2/show/NCT01932164
Mendoza NVM. Human dental pulp stem cells (DPSCs) as treatment on periodontal disease in adults in ageing and its relation to markers of oxidative stress and inflammation. World Health Organization. International Clinical Trials Registry Platform. 2016. Disponible en: http://www.isrctn.com/ISRCTN12831118
Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, et al. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002; 81 (8): 531-535.
Yamada Y, Nakamura S, Ito K, Sugito T, Yoshimi R, Nagasaka T et al. A feasibility of useful cell-based therapy by bone regeneration with deciduous tooth stem cells, dental pulp stem cells, or bone-marrow-derived mesenchymal stem cells for clinical study using tissue engineering technology. Tissue Eng Part A. 2010; 16 (6): 1891-1900.
Ito K, Yamada Y, Nakamura S, Ueda M. Osteogenic potential of effective bone engineering using dental pulp stem cells, bone marrow stem cells, and periosteal cells for osseointegration of dental implants. Int J Oral Maxillofac Implants. 2011; 26 (5): 947-954.
Nakao K, Morita R, Saji Y, Ishida K, Tomita Y, Ogawa M et al. The development of a bioengineered organ germ method. Nat Methods. 2007; 4 (3): 227-230.
Ikeda E, Tsuji T. Growing bioengineered teeth from single cells: potential for dental regenerative medicine. Expert Opin Biol Ther. 2008; 8 (6): 735-744.
Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S. The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res. 2005; 8 (3): 191-199.
Wang Y, Zhao Y, Jia W, Yang J, Ge L. Preliminary study on dental pulp stem cell-mediated pulp regeneration in canine immature permanent teeth. J Endod. 2013; 39 (2): 195-201.
Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One. 2006; 1: e79.
Khorsand A, Eslaminejad MB, Arabsolghar M, Paknejad M, Ghaedi B, Rokn AR et al. Autologous dental pulp stem cells in regeneration of defect created in canine periodontal tissue. J Oral Implantol. 2013; 39 (4): 433-443.
Hu J, Cao Y, Xie Y, Wang H, Fan Z, Wang J et al. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells following good manufacturing practice. Stem Cell Res Ther. 2016; 7 (1): 130.
Arthur A, Shi S, Zannettino AC, Fujii N, Gronthos S, Koblar SA. Implanted adult human dental pulp stem cells induce endogenous axon guidance. Stem Cells. 2009; 27 (9): 2229-2237.
de Souza PV, Alves FB, Costa Ayub CL, de Miranda-Soares MA, Gomes JR. Human immature dental pulp stem cells (hIDPSCs), their application to cell therapy and bioengineering: an analysis by systematic revision of the last decade of literature. Anat Rec (Hoboken). 2013; 296 (12): 1923-1928.
Grando-Mattuella L, Poli de Figueiredo JA, Nör JE, de Araujo FB, Medeiros-Fossati AC. Vascular endothelial growth factor receptor-2 expression in the pulp of human primary and young permanent teeth. J Endod. 2007; 33 (12): 1408-1412.
Tatullo M, Marrelli M, Shakesheff KM, White LJ. Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med. 2015; 9 (11): 1205-1216.
Yamazaki H, Tsuneto M, Yoshino M, Yamamura K, Hayashi S. Potential of dental mesenchymal cells in developing teeth. Stem Cells. 2007; 25 (1): 78-87.
Téclès O, Laurent P, Zygouritsas S, Burger AS, Camps J, Dejou J et al. Activation of human dental pulp progenitor/stem cells in response to odontoblast injury. Arch Oral Biol. 2005; 50 (2): 103-108.
Kerkis I, Ambrosio CE, Kerkis A, Martins DS, Zucconi E, Fonseca SA et al. Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: Local or systemic? J Transl Med. 2008; 6: 35.
Lin NH, Menicanin D, Mrozik K, Gronthos S, Bartold PM. Putative stem cells in regenerating human periodontium. J Periodontal Res. 2008; 43 (5): 514-523.
Hargreaves KM, Giesler T, Henry M, Wang Y. Regeneration potential of the young permanent tooth: what does the future hold? J Endod. 2008; 34 (7 Suppl): S51-S56.
Rosa V, Zhang Z, Grande RH, Nör JE. Dental pulp tissue engineering in full-length human root canals. J Dent Res. 2013; 92 (11): 970-975.