2005, Número 4
<< Anterior Siguiente >>
Bioquimia 2005; 30 (4)
ARN de interferencia y su importancia en la biomedicina molecular
Hernández-García JL
Idioma: Español
Referencias bibliográficas: 108
Paginas: 118-127
Archivo PDF: 149.54 Kb.
RESUMEN
El ARN de interferencia (ARNi) es una conservada respuesta biológica a la presencia de ARN de doble cadena, lo cual origina el silenciamiento específico de secuencia de un gen determinado. El esfuerzo exhaustivo en la investigación durante los últimos 5 años ha facilitado la colocación acelerada del ARNi de un fenómeno biológico desconocido a una herramienta valiosa utilizada en el silenciamiento de la expresión genética y en monitoreos genómicos funcionales a gran escala. Con esta tecnología, trabajos recientes han demostrado éxito en el potencial terapéutico del ARNi para tratar diversas enfermedades. Sin embargo, para incrementar estas aplicaciones y la apreciación en el futuro del ARNi tanto en la investigación básica como el tratamiento de desórdenes causados por expresiones genéticas aberrantes, es importante poseer un entendimiento del proceso del ARNi y sus limitaciones.
REFERENCIAS (EN ESTE ARTÍCULO)
Baulcombe D. RNA silencing in plants. Nature 2004; 431: 356-363.
Novina CD, Sharp PA. The RNAi revolution. Nature 2004; 430: 161-164.
Dykxhoorn DM, Novina CD, Sharp PA. Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 2003; 4: 457-467.
Jorgensen R. Altered gene expression in plants due to trans interactions between homologous genes. Trends Biotechnol 1990; 8: 340-344.
Napoli CA, Lemieux C, Jogersen R. Introduction of a chimeric chalcone synthetase gene in Petunia results in reversible cosuppression of homologous genes in trans. Plant Cell 1990; 2: 291-299.
van der Krol AR, Mur LA, Beld M, Mol JNM, Stuitje A. Flavonoid genes in Petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 1990; 2: 291-299.
Lau NC, Bartel DP. Censors of the genome. Sci Am 2003; 8: 34-41.
Hammond SM, Caudy AA, Hannon GJ. Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet 2001; 2: 110-119.
Romano N, Macino G. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologues sequences. Mol Microbiol 1992; 6: 3343-3356.
Tijisterman M, Ketting RF, Plasterk RH. The genetics of RNA silencing. Annu Rev Genet 2002; 36: 489-512.
Ullu E, Tschudi C, Chakraborty T. RNA interference in protozoan parasities. Cell Microbiol 2004; 6: 509-519.
Hannon GJ. RNA interference. Nature 2002; 418: 244-251.
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391: 806-811.
Fire A, Albertson D, Harrison SW, Moerman DG. Production of antisense RNA leads to effective and specific inhibition of gene expression in C. elegans muscle. Development 1991; 113: 503-514.
Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymetrically distributed. Cell 1995; 81: 611-620.
Grishok A, Tabara H, Mello CC. Genetic requirements for inheritance of RNAi in C. elegans. Science 2000; 287: 2494-2497.
Hannon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature 2004; 431: 371-378.
Bonetta L. RNAi: Silencing never sounded better. Nat Methods 2004; 1: 79-85.
Williams RB. Role of the double-stranded RNA activated-protein kinase (PKR) in cell regulation. Biochem Soc Trans 1997; 25: 509-513.
Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annu Rev Biochem 1998; 67: 227-264.
ElbashirSM, Hartborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotides RNAs mediated RNA interference in cultured mammalian cells. Nature 2001; 411: 494-498.
Kim DH, Belkhe MA, Rose SD, Chang MS, Choi S, Rossi JJ. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 2005; 23: 222-226.
Siolas D, Lerner C, Burchard J, Ge W, Linsley PS, Paddison PJ, et al. Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol 2005; 23: 227-231.
Waterhouse PM, Wong MB, Lough T. Gene silencing as an adaptative defence against viruses. Nature 2001; 411: 834-842.
Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature 2004; 431: 343-349.
Bartel DP. MicroRNA: genomics, biogenesis, mechanism and function. Cell 2004; 116: 281-297.
Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004; 23: 4051-4060.
Lee Y, Jean K, Lee J, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 2002; 21: 4663-4670.
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425: 415-419.
Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sader C, Gróisser FA, et al. Identification of microRNAs of the herpesvirus family. Nat Methods 2005; 2: 269-276.
Tomari Y, Zamore PD. MicroRNA biogenesis: Drosha can’t cut it without a partner. Curr Biol 2005; 15: R61-R64.
Basyuk E, Suavet F, Doglio A, Bordonne R, Bertrond E. Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Res 2003; 31: 6593-6597.
Bohnsack MT, Czaplinski K, Görlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear sport of pre-miRNAs. RNA 2004; 10: 185-191.
Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science 2004; 303: 95-98.
Yi R, Qin Y, Macara IG, Cullen RB. Exportin-5 mediates the nuclear exports of pre-microRNAs and short hairpins RNAs. Genes Dev 2003; 17: 3011-3016.
Hutvánger G, McLachlan J, Bálint E, Tuschl T, Zamore PD. A celular function for the RNA interference enzyme Dicer in small temporal RNA maturation. Science 2001; 93: 834-838.
Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 2001; 106: 23-34.
Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 2004; 117: 69-81.
Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman Z, et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2004; 2: E104.
Berstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001; 409: 363-366.
Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21 and 22 nt RNAs. Genes Dev 2001; 15: 188-200.
Chiu YL, Rana TM. RNAi in human cells: basic structural and functional features of small interfering RNA. Mol Cell 2002; 10: 549-561.
Hammond SM, Berstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-tanscriptional gene silencing in Drosophila cells. Nature 2000; 404: 293-296.
Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 2002; 16: 720-728.
Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ. Argonaute, a link between genetic and biochemical analyses of RNAi. Science 2001; 193: 1146-1150.
Martínez J, Patkaniowska A, Urlaub H, Lührmann R, Tuschl T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 2002; 110: 563-574.
Hutvágner G, Zamore PD. A microRNA in a multiple turnover RNAi enzyme complex. Science 2002; 297: 2056-2060.
Martínez J, Tuschl T. RISC a 5’phospho monoester-producing RNA endonuclease. Genes Dev 2004; 18: 975-980.
Pham JW, Pellino JL, Lee YS, Carthew RW, Sontheimer EJ. A Dicer-2-dependent 80S complex cleaves trageted mRNAs during RNAi in Drosophila. Cell 2004; 117: 83-94.
Nykänen A, Haley B, Zamore PD. ATP requirements and small interfering RNA structure in the RNAi pathway. Cell 2001; 107: 309-321.
Khvorova A, Reynolds A, Jayasena SD. Functional siRNA and miRNA exhibit strand bias. Cell 2003; 115: 209-216.
Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD. Assymetry in the assembly of the RNAi enzyme complex. Cell 2003; 115: 199-208.
Cornell MA, Xuan Z, Zhang MQ, Hannon GJ. The Argonaute family: tentacles that reach into RNAi, developmental control, stem-cell maintenance, and tumorigenesis. Genes Dev 2002; 16: 2733-2742.
Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Thomas Tuschl T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 2004; 15: 185-197.
Liu J, Carmell LA, Rivas FV, Marsden CG, Thomson JM, Song JJ, et al. Argonaute is the catalytic engine of mammalian RNAi. Science 2004; 305: 1437-1441.
Jin P, Zarnescu DC, Ceman S, Nakamoto M, Mowrey J, Jongens TA, et al. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nature Neurosci 2004; 7: 113-117.
Schwarz DS, Tomari Y, Zamore PD. The RNA induced silencing complex is a Mg2+ - dependent endonuclease. Curr Biol 2004; 14: 787-791.
Provost P, Dishart D, Doucet J, Frendewey D, Samuelsson B, Ràdmark O. Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J 2002; 21: 5864-5874.
Zhang H, Kolb FA, Brondani V, Billy E, Filipowicz W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J 2002; 21: 5875-5885.
Caudy AA, Ketting RF, Hammond SM, Denli AM, Bathoorn AM, Tops BBJ, et al. A microccocal nuclease homologue in RNAi effector complexes. Nature 2003; 425: 411-414.
Ma JB, Ye K, Patel DJ. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 2004; 429: 318-322.
Olsen PH, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after initiation of translation. Dev Biol 1999; 216: 671-680.
Seggerson K, Tang L, Moss EG. Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev Biol 2002; 243: 215-225.
Kim J, Krichevsky A, Grad Y, Hayes GD, Kosik KS, Church GM, et al. Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc Natl Acad Sci USA 2004; 101: 360-365.
Jaque JM, Triques K, Stevenson M. Modulation of HIV-1 replication by RNA interference. Nature 2002; 418: 435-438.
Lee NS, Dohjima D, Bauer G, Li H, Li MJ, Ehsani A, et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 2002; 20: 500-505.
Coburn GA, Cullen BR. Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J Virol 2002; 76: 9225-9231.
Surabhi RM, Gaynor RB. RNA interference directed against human immunodeficency virus type-1 replication. J Virol 2002; 76: 12963-12973.
Novina CD, Murray MF, Dykxhoorn DM, Beresford PJ, Riess J, Lee SK, et al. siRNA-directed inhibition of HIV-1 infection. Nature Med 2002; 8: 681-686.
Park WS, Miyano-Kurosaki N, Hayafune M, Nakajima E, Matsuzaki T, Shimada F, et al. Prevention of HIV-1 infection in human peripheral blood mononuclear cells by specific RNA interference. Nucleic Acids Res 2002; 30: 4830-4835.
Boden D, Pusch O, Lee F, Tucker L, Ramratnam B. Human immunodeficiency virus type-1 escape from RNA interference. J Virol 2003; 77: 11531-11535.
Martínez MA, Gutíerrez A, Armand-Ugón A, Blanco J, Parera M, Gómez J, et al. Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS 2002; 16: 2385-2390.
Capodici J, Kariko K, Weissman D. Inhibition of HIV infection by small interfering RNA-mediated RNA interference. J Immunol 2002; 169: 5196-5201.
Banerjea A, Li MJ, Bauer G, Remling L, Lee NS, Rossi J, et al. Inhibition of HIV-1 infection by lentiviral vector-transduced siRNAs in T lymphocytes differentiated in SCID-humice and CD34+ progenitor cell-derived macrophages. Mol Ther 2003; 8: 62-71.
Li MJ, Bauer G, Michienzi A, Yee JK, Lee NS, Kim J, et al. Inhibition of HIV-1 infection by lentiviral vectors expressing Pol III-promoted anti-HIV RNAs. Mol Ther 2003; 8: 196-206.
Eugen-Olsen J, Iversen AKN, Garred P, Koppelhus U, Pedersen C, Benfield TL, et al. Heterozygocity for a deletion in the CKR-5 gene leads to prolonged AIDS-free survival and slower CD4 T cell-decline in a cohort of HIV-seropositive individuals. AIDS 1997; 11: 305-310.
Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 1996; 382: 722-725.
Qin XF, An DS, Chen IS, Batimore D. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against-CCR5. Proc Natl Acad Sci USA 2003; 100: 183-188.
Dell’Agnolo C, Rabascio C, Mancuso P, Capillo M, Pruneri G, Gobbi A, et al. In vitro and in vivo hematopoietic potential of human stem cells residing in muscle tissue. Exp Hematol 2002; 30: 905-914.
Dropulic B. Lentivirus in the clinic. Mol Ther 2001; 4: 511-512.
Davis BM, Humeau L, Dropulic B. In vivo selection for human and murine hematopoietic cells transduced with a therapeutic MGMT lentiviral vector that inhibits HIV replication. Mol Ther 2004; 9: 160-172.
Amado RG, Mitsuyasu RT, Rosenblatt JC, Ngok FK, Bakker A, Cole S, et al. Anti-human immunodeficiency virus hematopoietic progenitor cell-derived ribozyme in a phase I study: myeloid and lymphoid reconstitution in human immunodeficiency virus type-1-infected patients. Hum Gen Ther 2004; 15: 251-262.
Michienzi A, Castanotto D, Lee N, Li S, Zaia JA, Rossi JJ. RNA-mediated inhibition of HIV in a gene therapy setting. Ann NY Acad Sci 2003; 1002: 63-71.
McCaffrey AP, Nakai H, Pandey K, Huang Z, Salazar FH, Xu H, et al. Inhibition of hepatitis virus B by RNA interference. Nature Biotechnol 2003; 6: 639-644.
Randall G, Grakovi A, Rice CM. Clearance of replicating hepatitis C virus replicon RNAs in cell cultured by small interferings RNAs. Proc Natl Acad Sci USA 2003; 100: 235-240.
Wilson JA, Jayasena S, Khvorova A, Sabatinos S, Rodrigue-Gervais IG, Arya S, et al. RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human livers cells. Proc Natl Acad Sci USA 2003; 100: 2738-1788.
Kapodia SB, Brideau-Andersen A, Chisari FV. Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc Natl Acad Sci USA 2003; 100: 2014-2018.
Song E, Lee SK, Wang J, Ince N, Ouyang N, Min J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nature Med 2003; 9: 347-351.
Eastman SJ, Baskin KM, Hodges BL, Chu Q, Gates A, Dreusicke R, et al. Developmental of catheter-based procedures for transducing the isolated rabbit liver with plasmid DNA. Hum Gen Ther 2002; 13: 2065-2077.
Kittler R, Buchholz F. RNA interference: gene silencing in the first lane. Semin Cancer Biol 2003; 13: 259-265.
Wall NR, Shi Y. Small RNA: can RNA interference be exploited from therapy? Lancet 2003; 362: 1401-1403.
Lu PY, Xie FY, Woodle MC. siRNA-mediated antitumorigenesis for drug target validation and therapeutics. Curr Opin Mol Ther 2003; 5: 225-234.
Buchele T. Proapoptotic therapy with oblimersen (bcl-2 antisense oligonucleotide)-review of preclinical and clinical results. Onkologie 2003; 26: 60-69.
Chiu YL, Rana TM. siRNA function in RNAi: a chemical modification analysis. RNA 2003; 9: 1034-1048.
Czauderna F, Fechtner M, Dames S, Aygün H, Klippel A, Pronk GJ, et al. Structural variations and stablishing modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 2003; 13: 169-189.
Wang L, Prakash RK, Stein CA, Koehn RK, Ruffner DE. Progress in the delivery of therapeutic oligonucleotides organ/cellular distribution and targeted delivery of oligonucleotides in vivo. Antisense Acid Drug Dev 2003; 31: 2705-2716.
Holtz MS, Bhatia R. Effect of imanitib mesylate on chronic myelogenous leukemia hematopoietic progenitor cells. Leuk Lymphoma 2004; 45: 237-245.
Tauchi T, Ohyashiki K. Molecular mechanisms of resistance of leukemia to imanitib mesylate. Leuk Res 2004; 28: 39-45.
Cowan-Jacob SW, Guez V, Fendrich G, Griffin JD, Fabbro D, Furet P, et al. Imanitib (STI571) resistance in chronic myelogenous leukemia and potential strategies for treatment. Mini Rev Med Chem 2004; 4: 285-299.
Marcucci G, Perrotti D, Caligiuri MA. Understanding the molecular basis of imanitib mesylate therapy in chronic myelogenous leukemia and the related mechanisms of resistance. Clin Cancer Res 2003; 9: 1248-1252.
Li MJ, McMahon R, Synder DS, Yee JK, Rossi JJ. Specific killing of Ph+ chronic myeloid leukemia cells by a lentiviral vector-delivered anti-bcr/abl small hairpin RNA. Oligonucleotides 2003; 13: 401-409.
Wohlbold L, van der Kuip H, Miething C, Vomlocher HP, Knabbe C, Duyster J, et al. Inhibition of bcr-abl gene expression by small interfering RNS sensitizes for imanitib mesylate (ST1571). Blood 2003; 102: 2236-2239.
Scherr M, Battmer K, Winkler T, Heindenreich O, Ganser A, Eder M. Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood 2003; 101: 1566-1569.
Check E. Hopes rise RNA therapy as mouse study hits target. Nature 2004; 432: 136.
Rossi JJ. A cholesterol connection in RNAi. Nature 2004; 432: 155-156.
Soutscheck J, Akinc A, Bramlage B, Charisse K, Constein R, Donoghue M, et al. Therapeutics silencing of an endogenous gene by administration of modified siRNAs. Nature 2004; 432: 173-178.
Clayton J. The silent treatment. Nature 2004; 431: 598-609.
Okamura K, Ishizuka A, Siomi H, Siomi MC. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev 2004; 18: 1655-1666.