2005, Número 1
<< Anterior Siguiente >>
Bol Med Hosp Infant Mex 2005; 62 (1)
Alteraciones hidroelectrolíticas y ácido-base más frecuentes en el paciente con diarrea
Pizarro-Torres D
Idioma: Español
Referencias bibliográficas: 88
Paginas: 57-68
Archivo PDF: 114.24 Kb.
RESUMEN
Como consecuencia de la pérdida de agua y electrolitos por heces y por vómitos en la enfermedad diarreica aguda se produce deshidratación. Las alteraciones iónicas principales son: hipernatremia (cuando se ofrecen líquidos hiperosmolares o con alta concentración de sodio) y la hiponatremia (si se ofrecen líquidos hipoosmolares y faltos o pobres en sodio). La deshidratación normonatrémica es la más frecuente. La deshidratación produce una reacción de vasoconstricción. La contracción de espacio vascular priva de oxígeno a muchos tejidos, cuyas células recurren a la mayor producción de ATP por la vía de la glucólisis y su utilización da por resultado gran producción de hidrogeniones y lactato, los que no pueden ser convertidos a ATP por la mitocondria por falta de oxígeno. La hipoxia aumenta la producción de radicales o especies activadas de oxígeno (EAO) en las arteriolas periféricas. La acidemia y el aumento de las EAO abren los canales de potasio K
ATP en los vasos periféricos y la salida de este ion produce hiperpotasemia y vasodilatación. Si el paciente tuvo déficit previo de este elemento puede presentar normo o hipopotasemia. Lo opuesto sucede en las arteriolas pulmonares. La acidemia y la disminución de EAO en las arteriolas pulmonares cierran los Kv y se produce despolarización de la membrana celular de los miocitos y vasoconstricción pulmonar. También la acidemia abre los canales de cloro ClC-2 con lo que se produce una salida de este ion hacia el espacio extracelular. Las alteraciones de calcio, fosfato y magnesio son mínimas. La administración de soluciones polielectrolíticas balanceadas, sea por vía oral, o endovenosa cuando fuera necesario, logran corregir en poco tiempo todas estas alteraciones revertiendo la hipertensión pulmonar y normalizando la presión arterial periférica.
REFERENCIAS (EN ESTE ARTÍCULO)
Field M,Rao MC,Chang EB.Intestinal electrolyte transport and diarrheal disease.(Second of two parts).N Engl J Med.1989;321:879-83.
Jentsch TJ,Stein V,Weinreich F,Zdebik AA.Molecular structure and physiological function of chloride channels. Physiol Rev.2002;82:503-68.
Sack DA,Sack RB,Nair GB,Siddique AK.Cholera.Lancet. 2004;363:223-33.
Field M.Intestinal ion transport and the pathophysiology of diarrhea.J Clin Invest.2003;111:931-43.
Keenan KP,Sharpnack DD,Collins H,Formal SB,O’Brien AD.Morphologic evaluation of the effects of Shigatoxin and E. coli Shiga-like toxin on the rabbit intestine.Am J Pathol.1986;125:69-80.
Organización Mundial de la Salud.Tratamiento y prevención de la diarrea aguda. Pautas para instructores de agentes de salud. Ginebra:OMS;1985.
Kreimeir U.Pathophysiology of fluid imbalance.Crit Care. 2000;4 Suppl 2:S3-7.
Snyder PM.The epithelial Na+ channel:cell surface insertion and retrieval in Na+ homeostasis and hypertension. Endocrinol Rev.2002;23:258-75.
Nielsen S,Kwon TH,Christensen BM,Promeneur D,Froklaer J,Marples D.Physiology and pathophysiology of renal aquaporins.Am J Soc Nephrol.1999;10:647-63.
Michelakis ED,Hampl V,Nsair A,Wu XC,Harry G, Haromy A,et al.Diversity of mitochondrial function explains differences in vascular oxygen sensing.Circ Res.2002;90: 1307-15.
Schier RW,Wang W.Acute renal failure and sepsis.N Engl J Med.2004;35:159-69.
Leach RM,Sheehan DW,Chacko VP,Sylvester JT.Energy state,pH,and vasomotor tone during hypoxia in precontracted pulmonary and femoral arteries.Am J Physiol Lung Cell Mol Physiol.2000;278:L294-304.
Archer S,Michelakis E.The mechanism(s) of hypoxic pulmonary vasoconstriction: potassium channels,redox O2, sensors,and controversies.News Physiol Sci.2002;17:131-7.
Barman SA.Potassium channels modulate hypoxic pulmonary vasoconstriction.Am J Physiol Lung Cell Physiol. 1996;275:L64-70.
Coppock EA,Martens JR,Tamkun MM.Molecular basis of hypoxia-induced pulmonary vasoconstriction:role of volta-ge-gated K+ channels.Am J Physiol Lung Cell Mol Physiol.2001;281:L1-12.
Stroffekova K,Kupert EY.Malinowkova DH,Cuppoletti J. Identification of the pH sensor and activation by chemical modification of the ClC-2G Cl channel.Am J Physiol Cell Physiol.1998;275:C1113-23.
Schwiebert EM,Cid-Soto LP,Stafford D,Carter M,Blaisdell CJ,Zeitlin PL et al.Analysis of ClC-2 channels as an alternative pathway for chloride conduction in cystic fibrosis airway cells.Natl Acad Sci.1998;95:3879-84.
Finberg L,Kravath RE,Fleischman AR,Saenger P,editores. Water and electrolytes in pediatrics.Physiology,pathology and treatment.Philadelphia: WB Saunders Company;1982.p. 11-22,56-61.
Finberg L,Kiley J,Luttrell CN.Mass accidental salt poisoning in infancy.A study of a hospital disaster.JAMA.1963;184:187-90.
Bucens IK,Catto-Smith AG.Hypernatraemic dehydration after Lucozade.Med J Aust.1991;155:128-9.
Ware S.Hypernatraemia and “glucose water”.Lancet.1976;2:494.
Nalin DR,Cash RA.Sodium content in oral therapy fordiarrhoea.Lancet.1976;2:957.
Paneth N.Hypernatremic dehydration in infancy.An epidemiologic review.Am J Dis Child.1980;134:785-92.
Fayad IM,Hirschhorn N,Abu-Zirky M,Kamel M.Hypernatraemic surveillance during a national diarrhoeal diseases control project in Egypt.Lancet.1992;339:389-93.
Arieff AI.Central nervous system manifestations of disordered sodium metabolism.Clin Endocrinol Metab.1984;13:269-94.
Lee JH,Arcinue E,Ross D.Brief report:organic osmolytes in the brain of an infant with hypernatremia.N Engl J Med.1994;331:439-42.
Finberg L,Harrison HE.Hypernatremia in infants.An evaluation of the clinical and biochemical findings accompanying this state.Pediatrics.1955;16:1-14.
Cogan MG.Fluid and electrolyte.Physiology and pathophysiology.Norwalk CT:Appleton & Lange;1991.p.100-11.
Farrar HC,Chande VT,Fitzpatrick DF,Sshema SJ.Hyponatremia as the cause of seizures in infants:a retrospective analysis of incidence,severity and clinical predictors.Ann Emerg Med.1995;26:42-8.
Sharifi J,Ghavami F,Nowruzi A.Treatment of severe diarrhoeal dehydration in hospital and home by oral fluids.J Trop Med Hyg.1987;90:19-24.
Rose DB.New approach to disturbances in the plasma sodium concentration.Am J Med.1986;81:1033-40.
Grunnet M,MacAulay N,Jorgensen NK,Jensen BS, Olesen SP,Klaerke DA.Regulation of cloned,Ca2+ activated K+channels by volume cell changes. Pflügers Arch.2002;444:167-77.
Jorgensen NK,Pedersen SF,Rasmussen HR,Grunnet M, Klaerke DA, Olesen SP.Cell swelling activates cloned Ca (2+)-activated K1+) channels:a role for the F-actin cytoskeleton. Biochimie Biophysic Acta (Biomembranes).2003;1615:115-25.
Roman RM,Smith RL,Feranchak AP,Clayton GH,Doctor RB,Fitz JG.ClC-2 chloride channels a contribute to HTC cell volume homeostasis.Am J Physiol Gastrointest LiverPhysiol.2001;280:G344-53.
Gutiérrez G.Cellular energy metabolism during hypoxia. Crit Care Med.1993;19:619-26.
Waypa GB,Chandel NS,Schumacker PT.Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing.Circ Res.2001;88:1259-66.
Shieh CC,Coghlan M,Sullivan JP,Gopalakrishnan M. Potassium channels:molecular defects,diseases,and therapeutic opportunities.Pharmacol Rev.2000;52:557-94.
Burnell JM,Villamil MF,Uyeno BT,Scribner BH. The effectin humans of extracellular pH change on the relationship between serum potassium concentration and intracellular potassium. J Clin Invest.1956;35:935-9.
Welfare W,Sasi P, English M.Challenges managing profound hypokalemia. BMJ. 2002;324:269-70.
Halperin ML.Potassium.Lancet.1998;352:135-40.
Platoshyn O, Remillard CV, Fantozzi I, Mandegar M, Sison TT,Zhang S, et al.Diversity of voltage-dependent K+ channels in human pulmonary artery smooth muscle cells.Am J Physiol Lung Cell Mol Physiol.2004;287:L226-38.
Jacobson J,Bohn D.Severe hypernatremic dehydration and hyperkalemia in an infant with gastroenteritis secondary to rotavirus. Ann Emerg Med.1993;22:1630-2.
Darrow DC.The retention of electrolyte during recovery from severe dehydration due to diarrhea.J Pediatr. 1946;28:515-40.
Oksche A,Rosenthal W.The molecular basis of nephrogenic diabetes insipidus.J Mol Med.1998;76:326-37.
Lentner C.Geigy Scientific Tables.Physical Chemistry. Basle:CIBA-GEIGY;1984.Vol.3.p.78.
Whittier WL,Rutecki GW.Primer on clinical acid-base problem solving. Dis Mon. 2004;50:122-62.
Stewart PA.Modern quantitative acid-basic chemistry. Can J Pharmacol.1983;61:1444-61.
Kellum JA.Determination of blood pH in health and disease. Crit Care.2000;4:4-14.
Constable PD.Hyperchloremic acidosis,the classicexample of strong ion acidosis.Anesth Analg.2003;96:919-22.
Kaplan LJ,Kellum JA. Initial pH, base deficit, lactate, aniongap, strong ion difference, and strong ion gap predict outco-me from major vascular injury. Crit Care Med. 2004;32:1120-4.
Siggaard-Andersen O,Fogh-Andersen N.Base excess or buffer base (strong ion difference) as measure of an nonrespiratory acid-base difference. Acta Anaesthesiol Scand Suppl.1995;107:123-8.
Griffith LSC, Fresh JW, Watten RH, Villaroman MP. Electrolyte replacement in paediatric cholera. Lancet. 1967;1:1197-9.
Israeli S, Rachmenl A, Frishberg Y, Erman A, Flasterstein B, Nitzan M, et al.Transient renal acidification defect during acute infantile diarrhea: the role of urinary sodium.J Pediatr. 1990;117:711-6.
Slater GI, Vladeck BC, Bassin R, Shoemaker WC. Sequential changes in distribution of cardiac output in hemorrhagic shock. Surgery. 1995;75:714-22.
McCarter FD, James JH, Luchette FA, Wang L, Firend LA, King JK, et al. Adrenergic blockade reduces skeletal muscle glycolysis and Na+,K+ -AT Pase activity during hemorrhage. J Surg Res.2001;99:235-44.
DeCoursey TE, Cherny VV. Common themes and problems of bioenergetics and voltage-gated proton channels. Bioch Biophys Acta (Bioenergetics). 2000;1458:104-19.
DeCoursey TE. Voltage-gated proton channels and other proton transfer pathways. Physiol Rev. 2003;83:475-579.
Xu H,Wu J, Cui N, Abdulkadir L,Wang R, Mao J, et al. Distinct residues control the acid-induced activation and inhibition of the cloned KATP channels. J Biol Chem. 2001;276:38690-6.
Knopp A, Thierfelder S, Koopmannr, Biskup C, Bole T, Benndorf K. Anoxia generates rapid massive opening of KATP channels in ventricular cardiac myocytes. Cardiovasc Res. 1999;41:629-40.
Zhu G, Chanchevalap S, Cui N, Jiang C. Effects of intraand extracellular acidification on single channel Kir2.3 currents. J Physiol (London). 1999;516:699-710.
Hein TW, Kuo L. cAMP-independent dilation of coronary arterials to adenosine. Role of nitric oxide, G proteins, and KATP channels. Circ Res. 1999;85:634-42.
Santa N, Kitazono T,A go T, Ooboshi H, Kamouchi M, Wakisaka M, et al. ATP-sensitive potassium channels mediate dilatation of basilar artery in response to intracellular acidification in vivo. Stroke. 2003;34:1276-80.
Rosenblum WI.ATP-sensitive potassium channels in the cerebral circulation. Stroke. 2003;34:1547-52.
Maingret F, Patel AJ, Lesage F, Lazdunski M, Honoré E. Mechano-or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem. 1999;274:26691-6.
Gurney AM, Osipenko ON, MacMillan D, MaFarlane KM, Tate RJ, Kempsill FEJ. Two-pore domain K channels, TASK-1, inpulmonary artery smooth muscle cells. Cir Res. 2003;93:957-64.
Sham JSK. Hypoxic pulmonary vasoconstriction. Ups and down of reactive oxygen species. Circ Res. 2002;91:649-51.
Harvey RM, Enson Y, Lewis ML, Greenough WB, Ally KM, Panno RA. Hemodynamic studies of cholera. Effects of hypovolemia and acidosis. Circulation. 1968;37:709-28.
Greenough III WB, Hirschhorn N, Gordon Jr RS, Linden-baum J, Ally KM. Pulmonary edema associated with acidosis in patients with cholera. Trop Geogr Med. 1976;28:86-90.
Watten RH, Phillips RA. Potassium in the treatment ofcholera. Lancet. 1960;2:999-1001.
Kappy MS,Morrow III G. A diagnostic approach to metabolic acidosis in children. Pediatrics. 1980;65:351-6.
Kety SS, Polis BD, Nadler CS, Schmidt CF. The blood flowand oxygen consumption of the human brain in diabetic acidosis and coma. J Clin Invest. 1948;27:500-10.
Pizarro D.Oral rehydration therapy: its use in neonatesand young infants. J Pediatr Gastroenterol Nutr.1986;5:6-8.
Gutman RA, Drutz DJ, Whalen GE, Watten RH. Double blind fluid therapy evaluation in pediatric cholera. Pediatrics. 1969;44:922-31.
74.Baskett TF. Sydney Ringer and lactated Ringer’s solution. Resuscitation. 2003;58:5-7.
Rahaman MM, Majid MA, Monsur KA. Evaluation of two intravenous rehydration solutions in cholera and non-cholera diarrhoea. Bull World Health Organ. 1979;57:977-81.
Posada G, Pizarro D. Rehidratación por vía endovenosa rápida con una solución similar a la recomendada por la OMS para rehidratación oral. Bol Med Hosp Infant Mex. 1986;43:63-9.
Bernal C, Correa AC, García G. Hidratación parenteral con solución 90 (Solución Pizarro) en niños deshidratados por enfermedad diarreica. IATREIA. 1994;7:118-25.
Escobar N, Rodríguez J, Figueroa C, Franquelli L, Marciano B, Abelanz M, et al. Balance hidroelectrolítico en hidrata-ción rápida en lactantes con diarrea aguda.Bol Med Hosp Infant Mex. 1995;52:231-8.
Pizarro D. Tratamiento y prevención de la enfermedad diarreica aguda. Bol Med Hosp Infant Mex. 1991;48:699-709.
Possner T, Plum F. Spinal-fluid pH and neurologic symptoms in systemic acidosis. N Engl J Med. 1967;277:605-13.
Papile LA, Burstein J, Burstein R, Koffler H, Koops B.Relationship of intravenous sodium bicarbonate infusions and cerebral intraventricular hemorrhage. J Pediatr. 1978;93:834-6.
Bureau MA, Bégin R, Berthiaume Y, Shaapcot D, Khoury K, Gagnon N. Cerebral hypoxia from bicarbonate infusion in diabetic acidosis. J Pediatr. 1980;96:968-73.
Sessler D, Mills P, Gregory G, Litt L, James T. Effects of bicarbonate on arterial and brain intracellular pH in neonatal rabbits recovery from hypoxic lactic acidosis. J Pediatr. 1987;111 (6 Pt 1):617-23.
Jordt SE, Jentsch TJ. Molecular dissection of gating in the ClC-2 chloride channel. EMBO J. 1997;16:1582-92.
Mohanlal D, Pettifor JM, Moodley GP. Serum calcium and phosphate disturbances during rehydration in acute dehydrating gastroenteritis. J Pediatr Gastroenterol Nutr. 1987;6:252-6.
Murtaza A, Khan SR, Butt KS, Lindblad BS, Aperia A. Hypocalcaemia and hyperphosphatemia in severely dehydrated children with and without convulsions. Acta PaediatrScand. 1988;77:251-6.
Sieg A, Su J, Muñoz A, Buchenau M, Nakazaki M, Aguilar BL, et al. Epinephrine-induced hyperpolarization of islet cells without KATP channels. Am J Physiol Endocrinol Metab. 2004;286:E463-71.
Rapoport S, Dodd K, Clark M, Syllm I. Postacidotic state of infantile diarrhea: symptoms and chemical data. Postacidotic hypocalcemia and associated decrease in levels of potassium, phosphorus and phosphatase in the plasma. Am JDis Child.1947;73:391-441.