2018, Número 2
<< Anterior Siguiente >>
Ann Hepatol 2018; 17 (2)
Natural Extracts Abolished Lipid Accumulation in Cells Harbouring non-favourable PNPLA3 genotype
Rojas Á, Gallego P, Gil-Gómez A, Muñoz-Hernández R, Rojas L, Maldonado R, Gallego-Durán R, García-Valdecasas M, Del Campo JA, Bautista JD, Romero-Gómez M
Idioma: Ingles.
Referencias bibliográficas: 43
Paginas: 242-249
Archivo PDF: 413.62 Kb.
RESUMEN
Sin resumen.
REFERENCIAS (EN ESTE ARTÍCULO)
Ahmed M. Non-alcoholic fatty liver disease 2015. World J Hepatol 2015; 18: 1450-9.
Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 2008; 118: 829-38.
Sung KC, Kim SH. Interrelationship between fatty liver and insulin resistance in the development of type 2 diabetes. J Clin Endocrinol Metab 2011; 96: 1093-7.
Contos MJ, Choudhury J, Mills AS, Sanyal AJ. The histologic spectrum of nonalcoholic fatty liver disease. Clin Liver Dis 2004; 8: 481-500.
Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science 2011; 332: 1519-23.
Musso G, Gambino R, Cassader M. Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog Lipid Res 2009; 48: 1-26.
Kurek K, Piotrowska DM, Wiesiolek-Kurek P, Lukaszuk B, Chabowski A, Górski J, Zendzian-Piotrowska M. Inhibition of ceramide de novo synthesis reduces liver lipid accumulation in rats with nonalcoholic fatty liver disease. Liver Int 2014; 34: 1074-83.
Liu Y, Wang D, Zhang D, Lv Y, Wei Y, Wu W, Zhou F, et al. Inhibitory effect of blueberry polyphenolic compounds on oleic acid-induced hepatic steatosis in vitro. J Agric Food Chem 2011; 23: 12254-63.
Kang OH, Kim SB, Seo YS, Joung DK, Mun SH, Choi JG, Lee YM, et al. Curcumin decreases oleic acid-induced lipid accumulation via AMPK phosphorylation in hepatocarcinoma cells. Eur Rev Med Pharmacol Sci 2013; 17: 2578-86.
Hwang YJ, Wi HR, Kim HR, Park KW, Hwang KA. Pinus densiflora Sieb. et Zucc. alleviates lipogenesis and oxidative stress during oleic acid-induced steatosis in HepG2 cells. Nutrients 2014; 6: 2956-72.
Li X, Wang R, Zhou N, Wang X, Liu Q, Bai Y, Liu Z, et al. Quercetin improves insulin resistance and hepatic lipid accumulation in vitro in a NAFLD cell model. Biomed Rep 2013; 1: 71-6.
Peng H, He Y, Zheng G, Zhang W, Yao Z, Xie W. Meta-analysis of traditional herbal medicine in the treatment of nonalcoholic fatty liver disease. Cell Mol Biol 2016; 62: 88-95.
Salomone F, Godos J, Zelber-Sagi S. Natural antioxidants for non-alcoholic fatty liver disease: molecular targets and clinical perspectives. Liver Int 2016; 36: 5-20.
Anstee QM, Day CP. The genetics of NAFLD. Nat Rev Gastroenterol Hepatol 2013; 10: 645-55.
Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, Boerwinkle E, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40: 1461-5.
He S, McPhaul C, Li JZ, Garuti R, Kinch L, Grishin NV, Cohen JC, et al. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J Biol Chem 2010; 285: 6706-15.
BasuRay S, Smagris E, Cohen JC, Hobbs HH. The PNPLA3 Variant Associated with Fatty Liver Disease (I148M) Accumulates on Lipid Droplets by Evading Ubiquitylation. Hepatology 2017 [Epub ahead of print].
Ampuero J, Del Campo JA, Rojas L, García-Lozano JR, Solá R, Andrade R, Pons JA, et al. PNPLA3 rs738409 causes steatosis according to viral & IL28B genotypes in hepatitis C. Ann Hepatol 2014; 13: 356-63.
Chavez-Tapia NC, Rosso N, Tiribelli C. Effect of intracellular lipid accumulation in a new model of non-alcoholic fatty liver disease. BMC Gastroenterol 2012; 12: 20.
Cremades O, Diaz-Herrero MM, Carbonero-Aguilar P, Gutierrez- Gil JF, Fontiveros E, Rodríguez-Morgado B, Parrado J, et al. Preparation and Characterisation of Selenium-Enriched Mushroom Aqueous Enzymatic Extracts (MAEE) Obtained from the White Button Mushroom (Agaricus bisporus). Food Chemistry 2012; 133: 1538-43.
Hu KQ, Yu CH, Mineyama Y, McCracken JD, Hillebrand DJ, Hasan M. Inhibited proliferation of cyclooxygenase-2 expressing human hepatoma cells by NS-398 a selective COX- 2 inhibitor. Int J Oncol 2003; 22: 757-63.
Clement S, Juge-Aubry C, Sgroi A, Conzelmann S, Pazienza V, Pittet-Cuenod B, Meier CA, et al. Monocyte chemoattractant protein-1 secreted by adipose tissue induces direct lipid accumulation in hepatocytes. Hepatology 2008; 48: 799-807.
McMillian MK, Grant ER, Zhong Z, Parker JB, Li L, Zivin RA, Burczynski ME, et al. Nile Red binding to HepG2 cells: an improved assay for in vitro studies of hepatosteatosis. In Vitr Mol Toxicol 2001; 14(3): 177-90.
Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction. Anal Biochem 1987; 162: 156-9.
Pisonero-Vaquero S, Gonzalez-Gallego J, Sanchez-Campos S, Garcia-Mediavilla MV. Flavonoids and Related Compounds in Non-Alcoholic Fatty Liver Disease Therapy. Curr Med Chem 2015; 22: 2991-3012.
Zhang PW, Chen FX, Li D, Ling WH, Guo HH. A CONSORTcompliant randomized double-blind placebo-controlled pilot trial of purified anthocyanin in patients with nonalcoholic fatty liver disease. Medicine (Baltimore) 2015; 94: e758.
Ji HF. Vitamin E therapy on aminotransferase levels in NAFLD/NASH patients. Nutrition 2015; 31: 899.
Guo H, Li D, Ling W, Feng X, Xia M. Anthocyanin inhibits high glucose-induced hepatic mtGPAT1 activation and prevents fatty acid synthesis through PKC. J Lipid Res 2011; 52: 908-22.
Baselga-Escudero L, Bladé C, Ribas-Latre A, Casanova E, Salvadó MJ, Arola L, Arola-Arnal A. Grape seed proanthocyanidins repress the hepatic lipid regulators miR-33 and miR-122 in rats. Mol Nutr Food Res 2012; 56: 1636-46.
PilHwang Y, Gyun Kim H, Choi JH, Truong Do M, Tran TP, Chun HK, Chung YC, et al. HG. 3-Caffeoyl 4-dihydrocaffeoylquinic acid from Salicornia herbacea attenuates high glucose- induced hepatic lipogenesis in human HepG2 cells through activation of the liver kinase B1 and silent information regulator T1/AMPK-dependent pathway. Mol Nutr Food Res 2013; 57: 471-82.
Yoshimura Y, Nishii S, Zaima N, Moriyama T, Kawamura Y. Ellagic acid improves hepatic steatosis and serum lipid composition through reduction of serum resistin levels and transcriptional activation of hepatic ppara in obese diabetic KK-A(y) mice. Biochem Biophys Res Commun 2013; 434: 486-91.
Gnoni GV, Paglialonga G. Resveratrol inhibits fatty acid and triacylglycerol synthesis in rat hepatocytes. Eur J Clin Invest 2009; 39: 211-18.
Wang GL, Fu YC, Xu WC, Feng YQ, Fang SR, Zhou XH. Resveratrol inhibits the expression of SREBP1 in cell model of steatosis via Sirt1-FOXO1 signaling pathway. Biochem Biophys Res Commun 2009; 380: 644-9.
Shang J, Chen LL, Xiao FX, Sun H, Ding HC, Xiao H. Resveratrol improves non-alcoholic fatty liver disease by activating AMP-activated protein kinase. Acta Pharmacol Sin 2008; 29: 698-706.
Vidyashankar S, Sandeep Varma R, Patki PS. Quercetin ameliorate insulin resistance and up-regulates cellular antioxidants during oleic acid induced hepatic steatosis in HepG2 cells. Toxicol In Vitro 2013; 27: 945-53.
Van De Wier B, Koek GH, Bast A, Haenen GR. The Potential of Flavonoids in the Treatment of Non-alcoholic Fatty Liver Disease. Crit Rev Food Sci Nutr 2017; 57: 834-55.
Aguirre L, Portillo MP, Hijona E, Bujanda L. Effects of resveratrol and other polyphenols in hepatic steatosis. World J Gastroenterol 2014; 20: 7366-80.
Jump DB, Tripathy S, Depner CM. Fatty Acid–Regulated Transcription Factors in the Liver. Annu Rev Nutr 2013; 33: 249-69.
Ip E, Farrell GC. Robertson G. Hall P. Kirsch R. Leclercq I. Central role of PPARalpha-dependent hepatic lipid turnover in dietary steatohepatitis in mice. Hepatology 2003; 38: 123-32.
Harano Y, Yasui K. Toyama T, Nakajima T, Mitsuyoshi H, Mimani M, Hirasawa T, et al. Fenofibrate a peroxisome proliferator- activated receptor alpha agonist reduces hepatic steatosis and lipid peroxidation in fatty liver shionogi mice with hereditary fatty liver. Liver Int 2006; 26: 613-20.
Vendrame S, Daugherty A, Kristo AS, Klimis-Zacas D. Wild blueberry (Vaccinium angustifolium)-enriched diet improves dyslipidaemia and modulates the expression of genes related to lipid metabolism in obese Zucker rats. British Journal of Nutrition 2014; 111: 194-200.
Wang LL, Zhang ZC, Hassan W, Li Y, Liu J, Shang J. Amelioration of free fatty acid-induced fatty liver by quercetin-3-Ob- D-glucuronide through modulation of peroxisome proliferator-activated receptor-alpha/sterol regulatory element- binding protein-1c signaling. Hepatol Res 2016; 46: 225-38.
Anderson N, Borlak J. Review. Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis. Pharmacol Rev 2008; 60: 311-57.