2017, Número 2
<< Anterior Siguiente >>
Arch Neurocien 2017; 22 (2)
Citotoxicidad de nanopartículas metálicas en cultivos de células cerebrales
Manzo RMI, Castro GPB, Agarwal V, Mora LS
Idioma: Español
Referencias bibliográficas: 40
Paginas: 13-23
Archivo PDF: 329.67 Kb.
RESUMEN
Las nanopartículas (NP) se han investigado por su tamaño diminuto y su
posibilidad de llegar a sitios específicos. Se estudian materiales para diseñar
nanovectores inocuos. Son pocos los estudios de la exposición a diferentes NP
que atraviesan la barrera hematoencefálica (BHE) y de los efectos que tienen
sobre células en este tejido.
Objetivo: determinar el deterioro celular en presencia de tres diferentes
nanopartículas de origen metálico en cultivo de células cerebrales.
Material y métodos: Realizamos un estudio de viabilidad con MTT y morfológico de
cultivos cerebrales (glía y neurona) al contacto con concentraciones de: 10, 50 100
y 250 µg/ml de NP de óxido de silicio (NPSiO
2), oro recubierto con silicio (NPAu@
Si) y plata (NPAg)
Resultados: las células cerebrales se ven afectadas en su viabilidad y morfología,
siendo más aparente la muerte celular con NPAg, con NPSiO
2 se observa un
descenso en la viabilidad de las mismas pero no tan severo como con NPAg, y para
las NPAu@Si, se nota un poco más de resistencia incluso a la concentración más alta.
REFERENCIAS (EN ESTE ARTÍCULO)
1.Estevez A, Pritchard S, Harper K, Aston J, Lynch A, Lucky J et al. Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Radical Biol Med 2011; 51(6):1155-63.
2.Walters R, Kraig R, Medintz I, Delehanty J, Stewart M, Susumu K, et al. Nanoparticle Targeting to Neurons in a rat hippocampal slice culture model. ASN Neuro 2012; 4(6):AN20120042.
3.Dayem A, Kim B, Gurunathan S, Choi H, Yang G, Saha S, et al. Biologically synthesized silver nanoparticles induce neuronal differentiation of SH-SY5Y cells via modulation of reactive oxygen species, phosphatases, and kinase signaling pathways. Biotechnol J 2014; 9(7):934-43.
4.Yang J, Lee C, Ko H, Suh J, Yoon H, Lee K, et al. Multifunctional Magneto-Polymeric Nanohybrids for Targeted Detection and Synergistic Therapeutic Effects on Breast Cancer. Angewandte Chemie 2007;119(46):8992-5.
5.Khung Y, Barritt G, Voelcker N. Using continuous porous silicon gradients to study the influence of surface topography on the behaviour of neuroblastoma cells. Experimental Cell Research 2008; 314(4):789-800.
6.Park J, Gu L, von Maltzahn G, Ruoslahti E, Bhatia S, Sailor M. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Materials 2009; 8(4):331-6.
7.Sailor M. Porous silicon in practice. Weinheim: Wiley-VCH; 2012.
8.Qin Z, Joo J, Gu L, Sailor M. Size Control of Porous Silicon Nanoparticles by Electrochemical Perforation Etching. Particle & Particle Systems Characterization 2013; 31(2):252-6.
9.Canham L. Handbook of Porous Silicon. EMIS; 1997.
10.Hong C, Lee J, Zheng H, Hong S, Lee C. Porous silicon nanoparticles for cancer photothermotherapy. Nanoscale Res Let 2011; 6(1):321.
11.Dos Santos C, Sekel M, Ingle A, Gupta I, Galdiero S, Galdiero M, et al. Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharmaceut Scien 2014;103(7): 1931-44.
12.Watanabe Y, Sakai T, Commun. Labs. Rev Electron 1971;19, 899.
13.Dan M, Tseng M, Wu Unrine, Grulke, Yokel. Brain microvascular endothelial cell association and distribution of a 5 nm ceria engineered nanomaterial. Internat J Nanomedicine 2012;4023.
14.Kim C, Kim T, Choi I, Soh M, Kim D, Kim Y, et al. Ceria Nanoparticles that can Protect against Ischemic Stroke. Angewandte Chemie 2012;124(44):11201-5.
15.Liu Q, Zhang J, Sun W, Reuben Q, Weiliang X, Hongchen G. Delivering hydrophilic and hydrophobic chemotherapeutics simultaneously by mesoporous silica nanoparticles to inhibit cancer cells. Internat J Nanomedicine 2012; 2(7): 999-1013.
16.Chen L, Miao Y, Chen L, Jin P, Zha Y, Chai Y, et al. The role of elevated autophagy on the synaptic plasticity impairment caused by CdSe/ZnS quantum dots. Biomaterials 2013; 34(38):10172-81.
17.Shen H, You J, Zhang G, Ziemys A, Li Q, Bai L, et al. Cancer therapy: cooperative, nanoparticle-enabled thermal therapy of breast cancer (Adv. Healthcare Mater. 1/2012). Advanced Healthcare Materials 2012; 1(1):128.
18.Xu F, Piett C, Farkas S, Qazzaz M, Syed N. Silver nanoparticles (AgNPs) cause degeneration of cytoskeleton and disrupt synaptic machinery of cultured cortical neurons. Molecular Brain 2013; 6(1):29.
19.Khanbabaie R, Jahanshahi M. Revolutionary Impact of Nanodrug Delivery on Neuroscience. Current Neuropharmacol 2012; 10(4):370-92.
20.Jodko-Piorecka K, Litwinienko G. First experimental evidence of dopamine interactions with negatively charged model biomembranes. ACS Chemical Neuroscience 2013; 4(7):1114-22.
21.Kefalopoulou Z, Politis M, Piccini P, Mencacci N, Bhatia K, Jahanshahi M, et al. Long-term clinical outcome of fetal cell transplantation for parkinson disease. JAMA Neurol 2014; 71(1):83.
22.Upadhyay R. Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Res Internat 2014.
23.Xiao Y, Gao X, Taratula O, Treado S, Urbas A, Holbrook R, et al. Anti-HER2 IgY antibody-functionalized singlewalled carbon nanotubes for detection and selective destruction of breast cancer cells. BMC Cancer 2009; 9(1):351.
24.Shade C. Liposomes as advanced delivery systems for nutraceuticals. Integrative Medicine 2016; 15(1): 33-6.
25.Jose J, Charyulu R. Prolonged drug delivery system of an antifungal drug by association with polyamidoamine dendrimers. Internat J Pharma Invest 2016; 6(2):123-7.
26.Rigo D, Ferroni L, Tocco I, Roman M, Munivrana I, Gardin C, et al. Active Silver nanoparticles for wound healing. Internat J Mol Science 2013; 1(14):4817-40.
27.Vazquez-García F, Tanomaru-Filho M, Chávez Andrade G, Bosso-Martelo R, Basso-Bernardi M, Guerreriro- Tanomaru J, Effect of silver nanoparticles on phsysicochemical and antibacterial properties of calcium silicate cements. Brazilian Dental Journal 2016; 27(5):508-14.
28.Jang S, Park J, Cha H, Jung S, Lee J, Jung S, et al. Silver nanoparticles moify VEGF signaling pathway and mucus hypersecretion in allergic airway inflammation. Internat J Nanomed 2012; 7:1329-43.
29.Boyles M, Kristl T, Andosch A, Zimmermann M, Tran N, Casals E, et al. Chitosan functionalization of gold nanoparticles encourages particle uptake and induces cytotoxicity and pro-inflammatory conditions in phagocytic cells, as well as enhancing particle interactions with serum components. J Nanobiotechnol 2015;18(13):84.
30.Wang L, Zhao W, Tan W. Bioconjugated silica nanoparticles:Development and applications. Nano Research. 2008; 1:99-115.
31.Chen X, Wong R, Khalidov I, Wang Y, Lee J, Wang Y, Jin M. Inflamed Leucocyte-mimetic nanoparticles for molecular imaging of inflammation. Biomaterials 2011; 32 (30):7651-61.
32.Liu Q, Zhang J, Sun W, Reuben Q, Weialiang X, Gu X. Delivering hydrophilic and hydrophobic chemotherapeutics simultaneously by magnetic mesoporous silica nanoparticles to inhibit cancer cells. Internat J Nanomed 2012; 7:999-1013.
33.Park H, Kim K, Jang S, Park J, Cha H, Lee J, et al. Attenuation of allergic airway inflammation and hyperresponsiveness in a murine model of asthma by silver nanoparticles. Internat J Nanomed 2010; 9(5): 505-15.
34.Bahadar H, Maqbool F, Niaz K, Abdollahi M. Toxicity of nanoparticles and on overview of current experimental models. Iranian Biomedical J 2016; 20(1):1-11.
35.Xie Y, Woolbright B, Kos M, McGill M, Dorko K, Kumer S, et al. Lack direct cytotoxicity of extracellular ATP against hepacyte: Role in the mechanism of acetaminophen hepatotoxicity. Clin Translational Res 2015; 1(2):100-6.
36.Darzynkiewicz Z, Galkowski D, Zhao H. Analysis of apoptosis by cytometry using TUNEL assay. Methods 2008; 44(3): 250-4.
37.Sun L, Li Y, Liu X, Jin M, Zhang L, Du Z, et al. Cytotoxicity and mitochondrial damage caused by silica nanoparticles. Toxicol 2011: 1619-29.
38.Choi J, Zheng Q, Katz H, Guilarte T. Silica-based nanoparticle uptake and cellular response by primary microglia. Environmental Health Perspectives 2010; 118:5.
39.Tran L, Wilson L. Nanomedicine: making controllable magnetic drug delivery possible for the treatment of breast cancer. Breast Cancer Res 2011; 13: 303.
40.Kim C, Kim T, Choi I, Soh M, Kim D, Kim Y et al. Ceria Nanoparticles that can protect against ischemic stroke, therapeutic. Angewandte Chemie Internat 2012; 51:11039-43.