2017, Número 1
<< Anterior
Sal Jal 2017; 4 (1)
Influenza estacional y la baja efectividad de las vacunas contra estos virus
Vega-Sánchez JC, Bravo-Madrigal J
Idioma: Español
Referencias bibliográficas: 56
Paginas: 57-69
Archivo PDF: 598.62 Kb.
RESUMEN
El virus de la influenza afecta mundialmente a millones de
personas y es responsable de aproximadamente 500,000
muertes cada año. La principal alternativa de protección es la
vacunación contra este virus, de tal manera que actualmente
existen múltiples opciones de vacunas, las cuales son
producidas de manera anual. Desafortunadamente este
virus tiende a mutar constantemente, lo que ocasiona
pérdida de eficacia en la protección. La recomendación de
la Organización Mundial de la Salud (OMS), en el diseño
de nuevas vacunas, ha sido la inclusión de cepas vacunales
similares a los virus prevalentes en cada temporada de
influenza. No obstante, la efectividad de estas vacunas no
es ha sido la esperada. Este hecho ha llevado a cuestionar si
otros métodos de producción de vacunas brindarían mayor
protección contra este virus, ya que se ha encontrado que
los virus producidos en huevo sufren cambios estructurales
que los vuelven diferentes al virus original, por tal motivo
la tendencia actual, es el uso de sustratos celulares para la
producción de antígeno viral, con lo que se espera mayor
efectividad, sin embargo y a pesar de estas estrategias aún
debe tomarse en consideración la magnitud del efecto
antigénico causado por el tipo de glicosilación inducido
por el sustrato de producción. Esta revisión aborda el tipo
de vacunas disponibles para prevenir la influenza, así como
la influencia que tiene el sustrato de producción sobre la
estructura antigénica de los virus producidos y su efecto
fi nal en la capacidad de brindar protección.
REFERENCIAS (EN ESTE ARTÍCULO)
Hilleman MR. Realities and enigmas of human viral infl uenza: pathogenesis, epidemiology and control. Vaccine 2002;20:3068- 3087.
Secretaria de Salud. Vigilancia Epidemiológica Semana 52, 2009. Epidemiologia. 2009. CENEVECE. SECRETARIA DE SALUD, MEXICO.
World Health Organization. Infl uenza (Seasonal) Fact sheet N° 211 [Internet]. 2014. [Consultado Noviembre 2015]. Disponible en http://www.who.int/mediacentre/factsheets/fs211/en/
World Health Organization. Vaccines [Internet]. [Consultado Noviembre 2015]. Disponible en http://www.who.int/infl uenza/ vaccines/en/
World Health Organization. Global Infl uenza Surveillance and Response System (GISRS) [Internet]. [Consultado Noviembre 2015]. Disponible en http://www.who.int/csr/disease/OP_ GISRS_FINAL.pdf
Esposito S, Montinaro V, Groppali E, Tenconi R, Semino M, Principi N. Live attenuatedintranasal infl uenza vaccine. Human Vaccines&Immunotherapeutics 2012;8(1):76–80.
Belshe RB, Edwards KM, Vesikari T, Black SV, Walker RE, Hultquist M, et al. Live Attenuated versus Inactivated Infl uenza Vaccine in Infants and Young Children. N Engl J Med 2007;356(7):685-696.
Pavia AT. Infl uenza Vaccine Eff ectiveness: Mysteries, Enigmas, and a Few Clues. J Infect Dis 2016;doi: 10.1093/infdis/jiv579
Gaglani M, Pruszynski J, Murthy K, Clipper L, Robertson A, Reis M, et al. Infl uenza vaccine eff ectiveness against the 2009 pandemic A(H1N1) virus diff ered by vaccine-type during 2013– 14 in the United States. J Infect Dis 2015;doi:10.1093/infdis/ jiv577.
Rimmelzwaan GF, Osterhaust AD. Infl uenza vaccines: new developments. Curr Opin Pharmacol 2001;1:491-496.
Minor PD, Engelhardt OG, Wood JM, Robertson JS, Blayer S, Colegate T, et al. Current challenges in implementing cell-derived infl uenza vaccines: implications for production and regulation, July 2007, NIBSC, Potters Bar, UK. Vaccine 2009;27:2907–2913. doi: 10.1016/j.vaccine.2009.02.064.
World Health Organization. Cell Culture Infl uenza Vaccines: Th e current status (7th WHO Meeting on Infl uenza Vaccine Technology Transfer to Developing Country Manufacturers) [Internet]. [Consultado Marzo 2016]. Disponible en http://www. who.int/phi/DAY2_20_VanDenBosch_PM_Dubai2014.pdf
Tree JA, Richardson C, Fooks AR, Clegg JC, Looby D. Comparison of large-scale mammalian cell culture systems with egg culture for the production of infl uenza virus a vaccine strains. Vaccine 2001;19:3444–3450.
Youil R, Su Q, Toner TJ, Szymkowiak C, Kwan Ws, Rubin B, et al. Comparative study of infl uenza virus replication in Vero and MDCK cell lines. J Virol Methods 2004;120:23–31.
Glezen WP. Cell-culture-derived infl uenza vaccine production. Lancet 2011;377: 698-700.
World Health Organization.Seasonal Infl uenza Vaccine Eff ectiveness, 2005-2015 [Internet].[ConsultadoNoviembre 2015]. Disponible en http://www.cdc.gov/fl u/professionals/ vaccination/eff ectiveness-studies.htm
Kissling E, Valenciano M, Cohen JM, Oroszi B, Barret A-S, Rizzo C, et al. I-MOVE Multi-Centre Case Control Study 2010-11: Overall and Stratifi ed Estimates of Infl uenza Vaccine Eff ectiveness in Europe. PLoS One 2011; 6(11): e27622.
Fielding JE, Grant KA, Tran T, Kelly HA. Moderate infl uenza vaccine eff ectiveness in Victoria, Australia, 2011. Euro Surveill 2012;17(11):pii=20115.
Skowronski DM, Janjua NZ, De Serres G, Winter AL, Dickinson JA, Gardy JL, et al. A Sentinel Platform to Evaluate Infl uenza Vaccine Eff ectiveness and New Variant Circulation, Canada 2010– 2011 Season. Clin Infect Dis 2012;55(3):332–342.
Ohmit SE, Th ompson MG, Petrie JG, Th aker SN, Jackson ML, Belongia EA, et al. Infl uenza Vaccine Eff ectiveness in the 2011 2012 Season: Protection Against Each Circulating Virus and the Eff ect of Prior Vaccination on Estimates. Clin Infect Dis 2014;58(3):319–327.
McLean HQ, Th ompson MG, Sundaram ME, Kieke BA, Gaglani M, Murthy K, et al. Infl uenza Vaccine Eff ectiveness in the United States During 2012–2013: Variable Protection by Age and Virus Type. J Infect Dis 2015;211:1529–1540.
Lambert LC, Fauci AS. Infl uenza vaccines for the future. N Engl J Med 2010;363:2036-2044.
World Health Organization. Protection from Flu Vaccination Reduced this Season [Internet]. [Consultado Noviembre 2015]. Disponible en http://www.cdc.gov/media/releases/2015/ p0115-fl u-vaccination.html
Padilla C, Condori F, Huaringa M, Marcos P, Rojas N, Gutierrez V, et al. Full Genome Analysis of Influenza A(H1N1)pdm09 Virus Isolated from Peru, 2013. Genome Announc 2014;2(2): e00191-14.
Dakhave M, Khirwale A, Patil K, Kadam A, Potdar V. Whole-Genome Sequence Analysis of Postpandemic Infl uenza A(H1N1)pdm09 Virus Isolates from India. Genome Announc 2013;1(5):e00727-13.
Sullivan S & Kelly H. Stratifi ed Estimates of Influenza Vaccine Effectiveness by Prior Vaccination: Caution Required. Clin Infect Dis 2013;57(3):474-476.
Mc Lean HQ, Th ompson MG, Sundaram ME, Meece JK, Mc Clure ML, Fiedrich TC, et al. Impact of Repeated Vaccination on Vaccine Eff ectiveness Against Infl uenza A(H3N2) and B During 8 Seasons. Clin Infect Dis 2014;59:1375–1385.
Petri J, Polina M, Hannimari K-K, Valkonen M, Kantele A, Ikonen N, et al. Complete Genome Sequences of Infl uenza A/H1N1 Strains Isolated from Patients during the 2013-2014 Epidemic Season in Finland. Genome Announc 2015;3(2):e01523-14.
World Health Organization. Recommended viruses for infl uenza vaccines for use in the 2010-2011 northern hemisphere infl uenza season. [Internet]. [Consultado Noviembre 2015]. Disponible en http://www.who.int/infl uenza/vaccines/ virus/2010_11north/en/
World Health Organization. Recommended viruses for infl uenza vaccines for use in the 2011-2012 northern hemisphere infl uenza season [Internet]. [Consultado Noviembre 2015]. Disponible en http://www.who.int/influenza/vaccines/virus/2011_12north/ en/
World Health Organization. Recommended viruses for infl uenza vaccines for use in the 2012-2013 northern hemisphere infl uenza season [Internet]. [Consultado Noviembre 2015]. Disponible en http://www.who.int/infl uenza/vaccines/virus/ recommendations/2012_13_north/en/
World Health Organization. Recommended viruses for infl uenza vaccines for use in the 2013-14 northern hemisphere infl uenza season [Internet]. [Consultado Noviembre 2015]. Disponible en http://www.who.int/infl uenza/vaccines/virus/ recommendations/2013_14_north/en/
World Health Organization. Recommended viruses for infl uenza vaccines for use in the 2014-2015 northern hemisphere infl uenza season [Internet]. [Consultado Noviembre 2015]. Disponible en http://www.who.int/infl uenza/vaccines/virus/ recommendations/2014_15_north/en/
World Health Organization.Recommended composition of infl uenza virus vaccines for use in the 2011 southern hemisphere infl uenza season [Internet].[ConsultadoNoviembre 2015]. Disponible en http://www.who.int/infl uenza/vaccines/ virus/2011south/en/
World Health Organization.Recommended composition of infl uenza virus vaccines for use in the 2012 southern hemisphere infl uenza season [Internet].[ConsultadoNoviembre 2015]. Disponible en http://www.who.int/infl uenza/vaccines/ virus/recommendations/2012south/en/
World Health Organization.Recommended composition of infl uenza virus vaccines for use in the 2013 southern hemisphere infl uenza season [Internet].[ConsultadoNoviembre 2015]. Disponible en http://www.who.int/infl uenza/vaccines/ virus/recommendations/2013_south/en/
World Health Organization.Recommended composition of infl uenza virus vaccines for use in the 2014 southern hemisphere infl uenza season [Internet].[ConsultadoNoviembre 2015]. Disponible en http://www.who.int/infl uenza/vaccines/virus/ recommendations/2014_south/en/
World Health Organization.Recommended composition of infl uenza virus vaccines for use in the 2015 southern hemisphere infl uenza season [Internet].[ConsultadoNoviembre de 2015]. Disponible en http://www.who.int/infl uenza/vaccines/virus/ recommendations/2015_south/en/
Klein EY, Serohijos AW, Choi JM, Shakhnovich EI, Pekosz A. Infl uenza A H1N1 pandemic strain evolution--divergence and the potential for antigenic drift variants. PLoS One 2014;9:e93632.
Govorkova EA, Kodihalli S, Alymova IV, Fanget B, Webster RG. Growth and immunogenicity of infl uenza viruses cultivated in Vero or MDCK cells and in embryonated chicken eggs. Dev Biol Stand 1999;98:39-51; discussion 73-34.
Roedig JV, Rapp E, Hoper D, Genzel Y, Reichl U. Impact of host cell line adaptation on quasispecies composition and glycosylation of infl uenza A virus hemagglutinin. PLoS One 2011;6:e27989.
An Y, Rininger JA, Jarvis DL, Jing X, Ye Z, Aumiller JJ, et al. Comparative Glycomics Analysis of Infl uenza Hemagglutinin (H5N1) Produced in Vaccine Relevant Cell Platforms. J Proteome Res 2013;12:3707-3720.
Zhang X, Chen S, Jiang Y, Huang J, Yang D, Zhu J, et al. Hemagglutinin glycosylation modulates the pathogenicity and antigenicity of the H5N1 avian infl uenza virus. Vet. Microbiol 2015;175:244-256.
Gambaryan AS, Marinina VP, Tuzikov AB, Bovin NV, Rudneva IA, Sinitsyn BV, et al. Eff ects of Host-Dependent Glycosylation of Hemagglutinin on Receptor-Binding Properties of H1 N1 Human Infl uenza A Virus Grown in MDCK Cells and in Embryonated Eggs. Virology 1998;247:170-177.
Fields BN, Knipe DM, Howley PM, Griffi n DE, Lamb RA, Martin MA, et al. Fields Virology. 4a ed. USA: Lippincott Williams & Wilkins;2001.
Stryer L, Berg J, Tymoczko J. Bioquimica con aplicaciones clínicas. 7a ed. España: Reverte; 2013.
Sun X, Jayaraman A, Maniprasad P, Raman R, Houser KV, Pappas C, et al. N-Linked Glycosylation of the Hemagglutinin Protein Influences Virulence and Antigenicity of the 1918 Pandemic and Seasonal H1N1 Influenza A Viruses. VirolJ 2013;87(15):8756– 8766.
Helenius A, Aebi M. Intracellular functions of N-linked glycans. Science 2001;291:2364-2369.
Butler M, Spearman M. Th e choice of mammalian cell host and possibilities for glycosylation engineering. Curr Opin Biotechnol 2014;30:107-112.
Romanova J, Katinger D, Ferko B, Voglauer R, Mochalova L, Bovin N,et al. Distinct host range of infl uenza H3N2 virus isolates in Vero and MDCK cells is determined by cell specifi c glycosylation pattern. Virology 2003;307:90-97.
Hutter J, Rodig JV, Hoper D, Seeberger PH, Reichl U, Rapp E, et al. Toward animal cell culture-based infl uenza vaccine design: viral hemagglutinin N-glycosylation markedly impacts immunogenicity. J Immunol 2013;190: 220-230.
Schwarzer J, Rapp E, Hennig R, Genzel Y, Jordan I, Sandig V, et al. Glycan analysis in cell culture-based infl uenza vaccine production: infl uence of host cell line and virus strain on the glycosylation pattern of viral hemagglutinin. Vaccine 2009;27:4325-4336.
Prabakaran M, Madhan S, Prabhu N, Qiang J, Kwang J. Gastrointestinal delivery of baculovirus displaying infl uenza virus hemagglutinin protects mice against heterologous H5N1 infection. J Virol 2010;84:3201-3209.
Low JG, Lee LS, Ooi EE, Ethirajulu K, Yeo P, Matter A, et al. Safety and immunogenicity of a virus-like particle pandemic infl uenza A (H1N1) 2009 vaccine: results from a double-blinded, randomized Phase I clinical trial in healthy Asian volunteers. Vaccine 2014;32:5041-5048.
Brandenburg B, Koudstaal W, Goudsmit J, Klaren V, Tang C, Bujny MV, et al. Mechanisms of hemagglutinin targeted infl uenza virus neutralization. PLoS One 2013;8:e80034.
Schuind A, Segall N, Drame M, Innis BL. Immunogenicity and safety of an EB66 cell-culture-derived A/Indonesia/5/2005 (H5N1)-AS03-adjuvanted influenza vaccine: Phase-I randomized trial. J Infect Dis 2015;212:531-541.