2017, Número 3
<< Anterior Siguiente >>
Neumol Cir Torax 2017; 76 (3)
Efecto del polimorfismo -197G›A en la producción de IL-17A en respuesta a cepas hipervirulentas de M. tuberculosis
Espinosa-Soto R, Regino-Zamarripa NE, León-Ávila G, Giono-Cerezo S, Muñoz-Torrico M, Salazar-Lezama MÁ, Márquez-García E, García-Sancho ME, Cruz-Lagunas A, Mendoza-Milla C, Jiménez-Álvarez LA, Ramírez-Martínez G, Zúñiga J
Idioma: Español
Referencias bibliográficas: 55
Paginas: 239-247
Archivo PDF: 235.40 Kb.
RESUMEN
Antecedentes: La respuesta inmune Th1/Th2 es insuficiente para el control de la infección por Mycobacterium tuberculosis (Mtb), particularmente contra cepas más virulentas como W-Beijing.
Métodos: Se incluyeron 30 pacientes con tuberculosis activa (TBA) y 30 controles con tuberculosis latente (TBL). Se evaluó la distribución del polimorfismo rs2275913 por PCR tiempo real. Se estimularon células mononucleares (CMN) con antígenos CFP-10 y ESAT-6 y extractos de H37Rv, W-Beijing-HN878. Los niveles de IL-17, IFN-γ se cuantificaron por Luminex. Las diferencias se evaluaron con t de Student y U de Mann-Whitney y valores de p ‹ 0.05 fueron significativos.
Resultados: No se encontró asociación significativa del polimorfismo-197G›A con la susceptibilidad a TBA. Se observó un efecto de la mutación -197G›A en la tasa de expresión de IL-17A. Las CMN de pacientes TBA con genotipo A/G mostraron una mayor producción de IL-17A (185 pg/mL) en relación con las de pacientes G/G (100 pg/mL, p = 0.008). Esto no se observó en individuos con TBL. Los antígenos de H37Rv y HN878 estimularon mayor producción de IFN-γ en CMN de pacientes con TBA (p ‹ 0.05).
Conclusión: La presencia del alelo A en la posición -197 del promotor de IL-17A condiciona mayor producción de esta citocina en respuesta a la cepa hipervirulenta W-Beijing-HN878.
REFERENCIAS (EN ESTE ARTÍCULO)
Dheda K, Barry CE 3rd, Maartens G. Tuberculosis. Lancet 2015;1-17. doi: 10.1016/S0140-6736(15)00151-8.
World Health Organization. Global Tuberculosis Report 2014. Geneve, Switzerland; 2014. doi: 10.1016/j.icrp.2009.12.007.
Zumla A, Raviglione M, Hafner R, von Reyn CF. Tuberculosis. N Engl J Med 2013;368(8):745-755. doi: 10.1056/NEJMra1200894.
Druszczyńska M, Kowalewicz-Kulbat M, Fol M, Włodarczyk M, Rudnicka W. Latent M. tuberculosis infection-pathogenesis, diagnosis, treatment and prevention strategies. Pol J Microbiol 2012;61(1):3-10.
Lillebaek T, Dirksen A, Baess I, Strunge B, Thomsen VØ, Andersen AB. Molecular evidence of endogenous reactivation of Mycobacterium tuberculosis after 33 years of latent infection. J Infect Dis 2002;185(3):401-404. doi: 10.1086/338342.
Yang Z, Rosenthal M, Rosenberg NA, et al. How dormant is Mycobacterium tuberculosis during latency? A study integrating genomics and molecular epidemiology. Infect Genet Evol 2011;11(5):1164-1167. doi: 10.1016/j.pestbp.2011.02.012.Investigations.
Flynn J, Chan J. Tuberculosis: latency and reactivation. Infect Immun 2001;69(7):4195-4201. doi: 10.1128/IAI.69.7.4195.
Lönnroth K, Raviglione M. Global epidemiology of tuberculosis: Prospects for control. Semin Respir Crit Care Med 2008;29(5):481-491. doi: 10.1055/s-0028-1085700.
Tufariello JM, Chan J, Flynn JL. Latent tuberculosis: Mechanisms of host and bacillus that contribute to persistent infection. Lancet Infect Dis 2003;3(9):578-590. doi: 10.1016/S1473-3099(03)00741-2.
Horsburgh CR Jr. Priorities for the treatment of latent tuberculosis infection in the United States. N Engl J Med 2004;350(20):2060-2067. doi: 10.1056/NEJMsa031667
350/20/2060 [pii].
Cobat A, Gallant CJ, Simkin L, et al. Two loci control tuberculin skin test reactivity in an area hyperendemic for tuberculosis. J Exp Med 2009;206(12):2583-2591. doi: 10.1084/jem.20090892.
Barry CE 3rd, Boshoff H, Dartois V, et al. The spectrum of latent tuberculosis: rethinking the goals of prophylaxis. Nat Rev Microbiol 2009;7(12):845-855. doi: 10.1038/nrmicro2236.The.
Yim JJ, Selvaraj P. Genetic susceptibility in tuberculosis. Respirology 2010;15(2):241-256. doi: 10.1111/j.1440-1843.2009.01690.x.
Bellamy R. Genome-wide approaches to identifying genetic factors in host susceptibility to tuberculosis. Microbes Infect 2006;8(4):1119-1123. doi: 10.1016/j.micinf.2005.10.025.
Selby R, Barnard JM, Buehler SK, Crumley J, Larsen B, Marshall WH. Tuberculosis associated with HLA-B8, BfS in a Newfoundland community study. Tissue Antigens 1978;11(5):403-408. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=694904.
Al-Arif LI, Goldstein RA, Affronti LF, Janicki BW. HLA-Bw15 and tuberculosis in a North American black population. Am Rev Respir Dis 1979;120(6):1275-1278. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=517859.
Hafez M, EL-Salab S, EL-Shennawy F, Bassiony MR. HLA-antigens and tuberculosis in the Egyptian population. Tubercle 1985;66(1):35-40. doi: 10.1016/0041-3879(85)90051-0.
Khomenko AG, Litvinov VI, Chukanova VP, Pospelov LE. Tuberculosis in patients with various HLA phenotypes. Tubercle 1990;71(3):187-192. doi: 10.1016/0041-3879(90)90074-I.
Selvaraj P, Reetha AM, Uma H, et al. Influence of HLA-DR and -DO phenotypes on tuberculin reactive status in pulmonary tuberculosis patients. Tuber Lung Dis 1996;77(4):369-373. doi: 10.1016/S0962-8479(96)90104-5.
Dubaniewicz A, Lewko B, Moszkowska G, Zamorska B, Stepinski J. Molecular subtypes of the HLA-DR antigens in pulmonary tuberculosis. Int J Infect Dis 2000;4(3):129-133. doi: 10.1016/S1201-9712(00)90073-0.
Fol M, Druszczynska M, Wlodarczyk M, Ograczyk E, Rudnicka W. Immune response gene polymorphisms in tuberculosis. Acta Biochim Pol 2015;62(4):633-640. doi: 10.18388/abp.2015_1130.
Ryu S, Park YK, Bai GH, Kim SJ, Park SN, Kang S. 3’UTR polymorphisms in the NRAMP1 gene are associated with susceptibility to tuberculosis in Koreans. Int J Tuberc Lung Dis 2000;4(6):577-580.
Malik S, Abel L, Tooker H, et al. Alleles of the NRAMP1 gene are risk factors for pediatric tuberculosis disease. Proc Natl Acad Sci U S A 2005;102(34):12183-12188. doi: 10.1073/pnas.0503368102.
Ge HB, Chen S. A meta-analysis of P2X7 gene-1513A/C polymorphism and pulmonary tuberculosis susceptibility. Hum Immunol 2016;77(1):126-130. doi: 10.1016/j.humimm.2015.11.009.
Singla N, Gupta D, Joshi A, Batra N, Singh J. Genetic polymorphisms in the P2X7 gene and its association with susceptibility to tuberculosis. Int J Tuberc Lung Dis 2012;16(2):224-229. doi: 10.5588/ijtld.11.0076.
Li CM, Campbell SJ, Kumararatne DS, et al. Association of a polymorphism in the P2X7 gene with tuberculosis in a Gambian population. J Infect Dis 2002;186(10):1458-1462. doi: 10.1086/344351.
Schurz H, Daya M, Möller M, Hoal EG, Salie M. TLR1, 2, 4, 6 and 9 variants associated with tuberculosis susceptibility: A systematic review and meta-analysis. PLoS One 2015;10(10):e0139711. doi: 10.1371/journal.pone.0139711.
Wu H, Yang L. Arg753Gln polymorphisms in toll-like receptor 2 gene are associated with tuberculosis risk: A meta-analysis. Med Sci Monit 2015;21:2196-2202. doi: 10.12659/MSM.893214.
Shi J, Xie M, Wang J, Xu Y, Xiong W, Liu X. Mannose-binding lectin two gene polymorphisms and tuberculosis susceptibility in Chinese population: a meta-analysis. J Huazhong Univ Sci Technolog Med Sci 2013;33(2):166-171. doi: 10.1007/s11596-013-1091-1.
Singla N, Gupta D, Joshi A, Batra N, Singh J, Birbian N. Association of mannose-binding lectin gene polymorphism with tuberculosis susceptibility and sputum conversion time. Int J Immunogenet 2012;39(1):10-14. doi: 10.1111/j.1744-313X.2011.01047.x.
Awomoyi AA, Charurat M, Marchant A, et al. Polymorphism in IL1B: IL1B-511 association with tuberculosis and decreased lipopolysaccharide-induced IL-1beta in IFN-gamma primed ex-vivo whole blood assay. J Endotoxin Res 2005;11(5):281-286. doi: 10.1179/096805105X58706.
Gomez LM, Camargo JF, Castiblanco J, Ruiz-Narváez EA, Cadena J, Anaya JM. Analysis of IL1B, TAP1, TAP2 and IKBL polymorphisms on susceptibility to tuberculosis. Tissue Antigens 2006;67(4):290-296. doi: 10.1111/j.1399-0039.2006.00566.x.
Selvaraj P, Alagarasu K, Harishankar M, Vidyarani M, Nisha Rajeswari D, Narayanan PR. Cytokine gene polymorphisms and cytokine levels in pulmonary tuberculosis. Cytokine 2008;43(1):26-33. doi: 10.1016/j.cyto.2008.04.011.
Trajkov D, Trajchevska M, Arsov T, et al. Association of 22 cytokine gene polymorphisms with tuberculosis in Macedonians. Indian J Tuberc 2009;56(3):117-131.
Vidyarani M, Selvaraj P, Prabhu Anand S, Jawahar MS, Adhilakshmi AR, Narayanan PR. Interferon gamma (IFN-gamma) & interleukin-4 (IL-4) gene variants & cytokine levels in pulmonary tuberculosis. Indian J Med Res 2006;124(4):403-410. http://www.ncbi.nlm.nih.gov/pubmed/17159260.
Amirzargar AA, Rezaei N, Jabbari H, et al. Cytokine single nucleotide polymorphisms in Iranian patients with pulmonary tuberculosis. Eur Cytokine Netw 2006;17(2):84-89. http://www.ncbi.nlm.nih.gov/pubmed/16840026.
Delgado JC, Baena A, Thim S, Goldfeld AE. Ethnic-specific genetic associations with pulmonary tuberculosis. J Infect Dis 2002;186(10):1463-1468. doi: 10.1086/344891.
Ma X, Reich RA, Wright JA, et al. Association between interleukin-8 gene alleles and human susceptibility to tuberculosis disease. J Infect Dis 2003;188(3):349-355. doi: 10.1086/376559.
Varahram M, Farnia P, Nasiri MJ, Karahrudi MA, Dizagie MK, Velayati AA. Association of Mycobacterium tuberculosis lineages with IFN-γ and TNF-α gene polymorphisms among pulmonary tuberculosis patient. Mediterr J Hematol Infect Dis 2014;6(1):e2014015. doi: 10.4084/MJHID.2014.015.
Okamoto Yoshida Y, Umemura M, Yahagi A, et al. Essential role of IL-17A in the formation of a mycobacterial infection-induced granuloma in the lung. J Immunol 2010;184(8):4414-4422. doi: 10.4049/jimmunol.0903332.
Dhiman R, Indramohan M, Barnes PF, et al. IL-22 produced by human NK cells inhibits growth of Mycobacterium tuberculosis by enhancing phagolysosomal fusion. J Immunol 2009;183(10):6639-6645. doi: jimmunol.0902587 [pii]
10.4049/jimmunol.0902587.
Cowan J, Pandey S, Filion LG, Angel JB, Kumar A, Cameron DW. Comparison of interferon-y-, interleukin (IL)-17- and IL-22-expressing CD4 T cells, IL-22-expressing granulocytes and proinflammatory cytokines during latent and active tuberculosis infection. Clin Exp Immunol 2012;167(2):317-329. doi: 10.1111/j.1365-2249.2011.04520.x.
Pravica V, Perrey C, Stevens A, Lee JH, Hutchinson IV. A single nucleotide polymorphism in the first intron of the human IFN-γ gene: Absolute correlation with a polymorphic CA microsatellite marker of high IFN-g production. Hum Immunol 2000;61(9):863-866. doi: 10.1016/S0198-8859(00)00167-1.
Liu XK, Lin X, Gaffen SL. Crucial role for nuclear factor of activated T cells in T cell receptor-mediated regulation of human interleukin-17. J Biol Chem 2004;279(50):52762-52771. doi: 10.1074/jbc.M405764200.
Espinoza JL, Takami A, Nakata K, et al. A genetic variant in the IL-17 promoter is functionally associated with acute graft-versus-host disease after unrelated bone marrow transplantation. PLoS One 2011;6(10):e26229. doi: 10.1371/journal.pone.0026229.
Peng R, Yue J, Han M, Zhao Y, Liu L, Liang L. The IL-17F sequence variant is associated with susceptibility to tuberculosis. Gene 2013;515(1):229-232. doi: 10.1016/j.gene.2012.11.017.
Shi GC, Zhang LG. Influence of interleukin-17 gene polymorphisms on the development of pulmonary tuberculosis. Genet Mol Res 2015;14(3):8526-8531. doi: 10.4238/2015.July.28.22.
Milano M, Moraes MO, Rodenbusch R, et al. Single nucleotide polymorphisms in IL17A and IL6 are associated with decreased risk for pulmonary tuberculosis in Southern Brazilian Population. PLoS One 2016;11(2):e0147814. doi: 10.1371/journal.pone.0147814.
Abhimanyu, Bose M, Komal, Varma-Basil M. Lack of association between IL17A and IL17F polymorphisms and related serum levels in north Indians with tuberculosis. Gene 2013;529(1):195-198. doi: 10.1016/j.gene.2013.06.090.
Ocejo-Vinyals JG, de Mateo EP, Hoz MA, et al. The IL-17 G-152A single nucleotide polymorphism is associated with pulmonary tuberculosis in northern Spain. Cytokine 2013;64(1):58-61. doi: 10.1016/j.cyto.2013.05.022.
Khader SA, Cooper AM. IL-23 and IL-17 in tuberculosis. Cytokine 2008;41(2):79-83. doi: 10.1016/j.cyto.2007.11.022.
Ordway D, Henao-Tamayo M, Harton M, et al. The hypervirulent Mycobacterium tuberculosis strain HN878 induces a potent TH1 response followed by rapid down-regulation. J Immunol 2007;179(1):522-531. doi: 179/1/522 [pii].
Gopal R, Monin L, Slight S, et al. Unexpected role for IL-17 in protective immunity against hypervirulent Mycobacterium tuberculosis HN878 infection. PLoS Pathog 2014;10(5):e1004099. doi: 10.1371/journal.ppat.1004099.
Tan HL, Rosenthal M. IL-17 in lung disease: friend or foe? Thorax 2013;68(8):788-790. doi: 10.1136/thoraxjnl-2013-203307.
Kidd P. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev 2003;8(3):223-246.