2016, Número 2
<< Anterior Siguiente >>
Rev Educ Bioquimica 2016; 35 (2)
El papel del antígeno Thomsen-Friedenreich en el desarrollo del cáncer de mama
Gallegos B, Osalde C, Pina S, Solorzano C, Pérez Y, Hernández CP
Idioma: Español
Referencias bibliográficas: 34
Paginas: 28-37
Archivo PDF: 541.47 Kb.
RESUMEN
El cáncer de mama es la segunda causa de muerte de mujeres en el mundo, sin
embargo si es diagnosticado oportunamente puede ser curado. Recientemente se
ha observado que cambios en la estructura de los oligosacáridos de membrana,
se relacionan con los procesos de transformación y proliferación celular, los cuales
pueden originar el cáncer de mama. La glicosilación incompleta de glicoproteínas,
expone nuevos antígenos, particularmente el antígeno Thomsen-Friedenreich (TF),
en esta revisión nos enfocaremos en el papel del antígeno TF, en el desarrollo del
cáncer de mama.
REFERENCIAS (EN ESTE ARTÍCULO)
Van den Steen P, Rudd MP, Dwek AR, Opdenaker G (1998) Concepts and Principles of O-glycosylation. Crit. Rev. Biochem. Mol. Biol 33: 151-208.
Carraway KL, Hull SR (1991) Cell surface mucin-type glycoprotein and mucin like domains. Glycobiology 1: 131-138.
Rose MC, Voter WA, Sage H, Brown CF, Kaufman B (1984) Effects of deglycosylation on the architecture of ovine submaxillary glycoprotein J Biol Chem 259:3167-3172.
Chapman BS, Eckart MR, Kaufman SE, Lapointe GR (1996) O-linked oligossacharide on the 75 kDa neurotrophin receptor J Neurochem 66: 1707-1716.
Lai R, Visser L, Poppema S (1991) Tissue distribution of restricted leucocyte common antigen. A comprehensive study with proteins and carbohidatre-specific CD45R antibodies. Lab Invest 64: 844-854.
Powell LD, Varki A (1994) The oligossacharide binding specifities of CD22 beta, a sialic acidspecific lectin of B cells. J Biol Chem 269: 10628-10636.
Gong X, Dubois DH, Miller DJ and Shur BD (1995) Activation of a G protein complex by aggregation of beta 1-4galactosyltransferase on the surface of sperm. Science 269: 1718- 1721.
Nguyen Q V, Knapp W, Humpreys RE (1993) Characterization of the invariant chain C-terminus (Glu183-Glu193) epitope which is sylation site at Thr 104 results in generation of a soluble human transferring receptor. Blood 83: 580-586.
Willougtby RE (1993) Retroviruses preferentially bind O-linked sialylglycoconjugates and sialomucin. Glycobiology 3: 437-445.
Yamashita Y, Chunng YS, Horie R, Kanagi R, Sowa M (1995) Alterations in gastric mucin with malignant transformation novel pathway for mucin synthesis. J Natl Cancer Inst 87: 441-446.
Ju T, Brewer K, D’Souza A, Cummings RD, Canfield WM (2002) Cloning and expression of human core 1 beta1,3-galactosyltransferase. J Biol Chem 277: 178–186.
Rivinoja A, Kokkonen N, Kellokumpu I, Kellokumpu S (2006) Elevated Golgi pH in breast and colorectal cancer cells correlate with the expression of oncofetal carbohydrate T-antigen. J Cell Physiol 208: 167–74.
Ju T, Cummings RD (2002) A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proc Natl Acad Sci USA 99: 16613–16618.
Schietinger A, Philip M, Yoshida BA, Azadi P, Liu H, Meredith SC, Schreiber H (2006) A mutant chaperone converts a wild-type protein into a tumor-specific antigen. Science 314: 304-308.
Ryder SD, Smith JA, Rhodes JM (1992) Peanut lectin is a mitogen for normal human colonic epithelium and HT29 colorectal cancer cells. J Natl Cancer Inst 84: 1410–1416.
Yu LG, Milton JD, Fernig DG, Rhodes JM (2001) Opposite effects on human colon cancer cell proliferation of two dietary Thomsen– Friedenreich antigen-binding lectins. J Cell Physiol 186: 282–287.
Yu L, Fernig DG, Smith JA, Milton JD, Rhodes JM (1993) Reversible inhibition of proliferation of epithelial cell lines by Agaricus bisporus (edible mushroom) lectin. Cancer Res 53: 4627–4632
Liu FT, Rabinovich GA (2005) Galectins as modulators of tumour progression. Nat Rev Cancer 5: 29–41.
Takenaka Y, Fukumori, T, Raz A (2004) Galectin-3 and metastasis. Glycoconj J 19: 543–549.
Kannagi R. (2002) Regulatory roles of carbohydrate ligands for selectins in the homing of lymphocytes. Curr Opin Struck Biol. 12: 599–608.
Giavazzi R, Foppolo M, Dossi R, Remuzzi A (1993) Rolling and adhesion of human tumor cells on vascular endothelium under physiological flow conditions. J Clin Invest 92: 3038–3044.
Khaldoyanidi SK, Glinsky VV, Sikora L, Glinskii AB, Mossine VV, Quinn TP, Glinsky GV, Sriramarao P (2003) MDAMB-435 human breast carcinoma cell homo- and heterotypic adhesion under flow conditions is mediated in part by Thomsen–Friedenreich antigengalectin- 3 interactions. J Biol Chem 278: 4127–4134.
Thorlacius H, Prieto J, Raud J, Gautam N, Patarroyo M, Hedqvist P, Lindbom L (1997) Tumor cell arrest in the microcirculation: lack of evidence for a leukocyte-like rolling adhesive interaction with vascular endothelium in vivo. Clin Immunol Immunopathol 83: 68–76.
Khaldoyanidi SK, Glinsky VV, Sikora L, Glinskii AB, Mossine VV, Quinn TP, Glinsky GV, Sriramarao P (2003) MDAMB-435 human breast carcinoma cell homo- and heterotypic adhesion under flow conditions is mediated in part by Thomsen–Friedenreich antigengalectin- 3 interactions. J Biol Chem 278: 4127–4134.
Zöller M (1995) CD44 physiological expression of distinctisoforms as evidence for organ-specific metastatsis formation. J Mol Med 73: 425.
Nakamori S, Ota DM, Cleary KR, Shirotani K, Irimura T (1994) MUC1 mucin expression as a marker of progression and metastasis of human colorectal carcinoma. Gastroenterology 106: 353–361.
Yu LG, Andrews N, Zhao Q, McKean D, Williams JF, Connor LJ, Gerosimenko OV, Hilkens J, Hirabayashi J, Kasai K, Rhodes JM (2007) Galectin-3 interaction with Thomsen– Friedenreich oligosaccharide on cancerassociated MUC1 causes increased cancer cell-endothelial adhesion. J Biol Chem 282: 773–781.
Bhavanandan VP, Umemoto J, Davidson EA (1976) Characterization of an endo-alpha-Nacetyl galactosaminidase from Diplococcus pneumoniae. Biochem Biophys Res Commun 70: 738–745.
Baldus SE, Wienand JR, Werner JP, Landsberg S, Drebber U, Hanisch FG, Dienes HP (2005) Expression of MUC1, MUC2 and oligosaccharide epitopes in breast cancer: prognostic significance of a sialylated MUC1 epitope. Int J Oncol 27: 1289–1297.
Alexandra C. Kölbl, Ulrich Andergassen and Udo Jeschke (2015) The role of glycosylation in breast cancer metastasis and cancer control. Frontiers in oncology 5: 1-5.
Gallegos B, Pérez-Campos E, Martinez R, Leyva P, Martinez M, Hernández R, Pina S, Hernández C, Zenteno E, Hernández P (2010) O-glycosilation expression in fibroadenoma. Prep Biochem Biotechnol 40: 1-12.
Gallegos IB, Pérez-Campos E, Martinez M, Mayoral MÁ, Pérez L, Aguilar S, Zenteno E, Pina M del S, Hernández P (2012) Expression of antigen tf and galectin-3 in fibroadenoma. BMC Res Notes 24; 5: 694. doi: 10.1186/1756- 0500-5-694. ISSN: 1756-0500
Gallegos-Velasco B, Pérez-Campos E, Aguilar- Ruiz S, Pérez-Campos L, Solórzano-Mata C, Pérez-Cervera Y, Zenteno E, Hernández-Cruz P (2015) Antigen TF and Galectin-3 expression in breast carcinoma. Journal of Biology and Nature 2: 37-49.
Gallegos B, Cuevas B, Pérez Campos E, Coutiño R, Pérez Campos L, Hernández Cruz P (2013) El papel de la galectina tres en el desarrollo del cáncer de mama. Revista de Educación Bioquímica 32(1): 3-12.