2017, Número 5
<< Anterior Siguiente >>
Rev Mex Neuroci 2017; 18 (5)
Caracterización fractal de ventrículos cerebrales normales en imágenes de resonancia magnética ponderadas en T2
Velasco A, Rodríguez JO, Ordonez-Rubiano EG, Prieto SE, Correa CS, Forero G, Mendez L, Bernal H, Valero LP, Hoyos N
Idioma: Ingles.
Referencias bibliográficas: 35
Paginas: 14-22
Archivo PDF: 294.26 Kb.
RESUMEN
Introducción: Las dimensiones fractales permiten caracterizar
matemáticamente la irregularidad de las formas naturales como los
son las estructuras cerebrales. Los ventrículos cerebrales son objetos
irregulares que pueden ser estudiados mediante esta geometría.
Objetivo: La investigación pretende desarrollar una caracterización
en el espacio fractal de Box-Counting del ventrículo cerebral normal
del adulto.
Métodos: Con fundamento en el método Box-Counting, se
analizó la estructura geométrica de las imágenes obtenidas
mediante TAC de un sujeto normal. Para ello se tomaron las
imágenes de cortes cada 4mm y se midieron las dimensiones
fractales de los ventrículos cerebrales, determinando además la
Armonía Matemática Intrínseca Ventricular entre las imágenes
consecutivas de cada ventrículo.
Resultados: Las dimensiones fractales presentaron valores entre
0.8931 y 1.3599, con valores de AMIV entre 0 y 2, mostrando la
capacidad de la metodología de caracterizar la estructura irregular
de los ventrículos cerebrales.
Conclusiones: Los resultados constituyen una nueva medida
morfométrica para los ventrículos cerebrales, que permitió establecer
medidas características de normalidad de utilidad como referencia
para determinar la presencia de alteraciones ventriculares.
REFERENCIAS (EN ESTE ARTÍCULO)
Mandelbrot B. ¿Cuánto Mide la Costa de Gran Bretaña? Los Objetos Fractales. Barcelona: Tusquets Editores; 1987. 27–50.
Mandelbrot B. The Fractal Geometry of Nature. Barcelona: Tusquets Editores; 2000.
Peitgen H-O, Jürgens H, Saupe D. Limits And Self Similarity. Chaos and Fractals. New York: Springer- Verlag; 1992. 135–82.
Peitgen H, Jürgens H, Saupe D. Length, Area and Dimension: Measuring Complexity and Scaling Properties. In: Peitgen H, Jürgens H, Saupe D, eds. Chaos and Fractals. New York: Springer-Verlag; 1992. 183–228.
Al-Kadi OS. A multiresolution clinical decision support system based on fractal model design for classification of histological brain tumours. Comput Med Imaging Graph. 2015;41:67-79.
Hayano K, Yoshida H, Zhu AX, Sahani D V. Fractal analysis of contrast-enhanced CT images to predict survival of patients with hepatocellular carcinoma treated with sunitinib. Dig Dis Sci. 2014;59(8):1996–2003.
Fiz JA, Monte-Moreno E, Andreo F, et al. Fractal dimension analysis of malignant and benign endobronchial ultrasound nodes. BMC Med Imaging. 2014;14:22.
Metze K. Fractal dimension of chromatin: potential molecular diagnostic applications for cancer prognosis. Expert Rev Mol Diagn. 2013;13(7):719-735.
Tălu S. Multifractal geometry in analysis and processing of digital retinal photographs for early diagnosis of human diabetic macular edema. Curr Eye Res. 2013;38(7):781–792.
Rodriguez J, Mariño M, Avilan N, et al. Medidas fractales de arterias coronarias en un modelo experimental de reestenosis. Armonía matemática intrínseca de la estructura arterial. Rev Colomb Cardiol. 2002;10:65–72.
Rodríguez J, Prieto S, Correa C, et al. Theoretical generalization of normal and sick coronary arteries with fractal dimensions and the arterial intrinsic mathematical harmony. BMC Med Phys. 2010;10(1):1–6.
Rodríguez J, Prieto S, Correa C, et al. Fractal diagnosis of severe cardiac dysfunction Fractal dynamic of the left coronary branching. Rev Colomb Cardiol. 2012;19(5):225–32.
Rodríguez J, Prieto S, Correa C, et al. Fractal diagnosis of left heart ventriculograms Fractal geometry of ventriculogram during cardiac dynamics. Rev Colomb Cardiol. 2011;19(1):18–24.
Rodríguez J, Prieto S, Ortiz L, et al. Mathematical diagnosis of pediatric echocardiograms with fractal dimension measures evaluated through intrinsic mathematical harmony. Rev Colomb Cardiol. 2010;17(2):79–86.
Correa C, Rodríguez J, Prieto S, et al. Geometric diagnosis of erythrocyte morphophysiology. Int J Med Med Sci. 2012;3(11):715–720.
Prieto S, Rodríguez J, Correa C, et al. Diagnosis of cervical cells based on fractal and Euclidian geometrical measurements: Intrinsic Geometric Cellular Organization. BMC Med Phys. 2014;14(1):2.
Rodríguez J, Correa C, Melo M, et al. Chaotic cardiac law : Developing predictions of clinical application. Int J Med Med Sci. 2013;4(2):79–84.
Spasic S, Culic M, Grbic G, et al. Spectral and fractal analysis of cerebellar activity after single and repeated brain injury. Bull Math Biol. 2008;70(4):1235–1249.
Lahmiri S, Boukadoum M. Alzheimer’s disease detection in brain magnetic resonance images using multiscale fractal analysis. ISRN Radiol. 2013;2013:627303.
Di Ieva A, Grizzi F, Jelinek H, et al. Fractals in the Neurosciences, Part I: General Principles and Basic Neurosciences. Neuroscientist. 2013;20(4):403–417.
Di Ieva A, Esteban FJ, Grizzi F, et al. Fractals in the Neurosciences, Part II: Clinical Applications and Future Perspectives. Neuroscientist. 2015;21(1):30–43.
Bitar R, Leung G, Perng R, et al. MR Pulse Sequences : What Every Radiologist Wants to Know but Is Afraid to Ask. Radio Graphics. 2006;26(2):513–538.
Ministerio de Salud de Colombia. Resolución número 8430 DE 1993. 1–19.
Hayano K, Lee SH, Yoshida H, et al. Fractal analysis of CT perfusion images for evaluation of antiangiogenic treatment and survival in hepatocellular carcinoma. Acad Radiol. 2014;21(5):654– 660.
Rodríguez J. New diagnosis aid method with fractal geometry for pre-neoplasic cervical epithelial cells. Rev UDCA Actual y Divulg Científica. 2011;1(14):15–22.
Liu JZ, Zhang LD, Yue GH. Fractal dimension in human cerebellum measured by magnetic resonance imaging. Biophys J. 2003;85(6):4041–4016.
Reishofer G, Koschutnig K, Enzinger C, et al. Fractal dimension and vessel complexity in patients with cerebral arteriovenous malformations. PLoS One. 2012;7(7):e4114–4118.
Wang Y, Zhou W, Yuan Q, et al. Comparison of ictal and interictal EEG signals using fractal features. Int J Neural Syst. 2013;23(6):1350028.
Rodríguez J, Bernal P, Álvarez L, et al. Plasmodium falciparum MSP-1 and EBA-140 peptides prediction of binding to HLA class II probability, combinatory and entropy applied to peptide sequences. Inmunología. 2010;29(3):91–9.
Rodríguez J, Bernal P, Prieto S, et al. Theory of malaria peptides with high-affinity binding to red blood cells. Theoretical predictions of new binding peptides and predictive mutations of critical amino acids. Inmunología. 2010;29(1):7–19.
Rodríguez J, Prieto S, Correa C, et al. Predictions of CD4 lymphocytes’ count in HIV patients from complete blood count. BMC Med Phys. 2013;13(1):3.
Rodríguez J, Prieto S, Correa C, et al. Teoría de conjuntos aplicada al recuento de linfocitos y leucocitos: predicción de linfocitos T CD4 de pacientes con virus de la inmunodeficiencia humana/ sida. Inmunología. 2013;32(2):50–56.
Rodríguez J, Prieto S, Domínguez D, et al. Mathematical-physical prediction of cardiac dynamics using the proportional entropy of dynamic systems. Int J Med Med Sci. 2013;4(9):370–381.
Rodríguez J, Prieto S, Flórez M, et al. Physical-mathematical diagnosis of cardiac dynamic on neonatal sepsis : predictions of clinical application. Int J Med Med Sci. 2014;5(5):102–108.
Rodríguez J. A method for forecasting the seasonal dynamic of malaria in the municipalities of Colombia. Rev Panam Salud Pública. 2010;27(3):211–218.