2005, Número 2
<< Anterior Siguiente >>
Rev Biomed 2005; 16 (2)
La cafeína y los antagonistas de los receptores A2A de la adenosina como posibles adyuvantes de la terapia anticolinérgica en la enfermedad de Parkinson.
Góngora-Alfaro JL, Moo-Puc RE, Villanueva TJ, Arankowsky-Sandoval G, Álvarez-Cervera FJ, Pineda-Cortés JC, Heredia-López FJ, Bata-García JL
Idioma: Español
Referencias bibliográficas: 151
Paginas: 99-112
Archivo PDF: 109.04 Kb.
RESUMEN
La enfermedad de Parkinson ocupa el segundo lugar entre las enfermedades degenerativas del sistema nervioso, que afligen con mayor frecuencia a las personas de edad avanzada. En México, la Secretaría de Salud ha incorporado a la enfermedad de Parkinson dentro del programa 2001-2006 de Acción en Salud Mental ya que representa una causa importante de incapacidad personal, laboral y social en la población mexicana. Una acción fundamental que se propone en este programa es mejorar la eficacia y calidad en la atención del enfermo, otorgándole el diagnóstico correspondiente y asegurando la posibilidad de medicamentos. Los modelos preclínicos, experimentales, son necesarios para identificar tratamientos farmacológicos eficaces, con baja incidencia de efectos adversos, capaces de restaurar la actividad motora de los pacientes, permitiendo su reintegración a las actividades cotidianas. Utilizando los modelos de catalepsia inducida con haloperidol y de acinesia inducida con reserpina, hemos encontrado que los efectos antiparkinsonianos del fármaco anticolinérgico trihexifenidilo se incrementan cuando se administra en combinación con dosis bajas de cafeína o de antagonistas selectivos de los receptores A
2A de adenosina. Aunque la cafeína es un antagonista no selectivo de los receptores A
1 y A
2A, su bajo costo y su relativa carencia de efectos adversos la convierten en un fármaco prometedor para ser usado como adyuvante de la terapia anticolinérgica, permitiendo reducir sus dosis y sus efectos adversos en pacientes con enfermedad de Parkinson.
REFERENCIAS (EN ESTE ARTÍCULO)
1.- Birkmayer W, Danielczyk W. La enfermedad de Parkinson. Barcelona: Empresa Editorial Herder SA; 1997.
2.- Mayeux R. Epidemiology of neurodegeneration. Annu Rev Neurosci 2003; 26: 81-104.
3.- Baldereschi M, DiCarlo A, Rocca WA, Vanni P, Maggi S, Perissinotto E, et al. Parkinson's disease and parkinsonism in a longitudinal study: two-fold higher incidence in men. ILSA Working Group. Italian Longitudinal Study on Aging. Neurology 2000; 55: 1358-63.
4.- Bargas J, Galarraga E, Aceves J. Los ganglios basales. En: Muñoz-Martínez J, García X, compiladores. Fisiología: Células, Organos y Sistemas. México: Secretaría de Salud, UNAM, CINVESTAV-IPN, IMSS, Sociedad Mexicana de Ciencias Fisiológicas y Fondo de Cultura Económica; 1998. vol 5, Unidad X Sistema Nervioso. p. 257-73.
5.- Lang AE, Lozano AM. Parkinson´s disease. First of two parts. N Eng J Med 1998; 339: 285-94.
6.- Jiménez FJ, Pilés S, Muñoz E, Aguilar M. Síndromes parkinsonianos. Arch Neuroci 2000; 5: 84-95.
7.- García-Martínez JC. La enfermedad de Parkinson vista por un afectado. Rev Neurol 2003; 37: 391-400.
8.- Gage FH. Society for Neuroscience Newsletter USA. 2002; May-June.
9.- Consejo Nacional de las Adicciones. Programas de Acción en Salud Mental: Programa Específico de Atención a la Enfermedad de Parkinson. México DF 2002. Disponible en: URL: http://www.salud.gob.mx/unidades/conadic/pparkinson_index.htm#intro.
10.- Instituto Nacional de Estadística, Geografía e Informática de México. INEGI 2004. Disponible en: URL: http://www.inegi.gob.mx/inegi/default.asp.
11.- Otero-Siliceo E. Parkinson: Enfoque al Futuro. México: Fondo de Cultura Económica e Instituto Nacional de Neurología y Neurocirugía; 1996.
12.- Barbeau A. The pathogenesis of Parkinson´s disease: a new hypothesis, Canad Med Ass J 1962; 87: 802-7.
13.- McGeer P, Boulding JE, Gibson WC. Drug induced extrapyramidal reactions: treatment with diphenhydramine hydrochloride and dydroxyphenylalanine JAMA 1961; 177: 665-70.
14.- Weintraub MI, VanWoert MH. Reversal by levodopa of cholinergic hypersensitivity in Parkinson´s disease. N Eng J Med 1971; 284: 412-5.
15.- McGeer PL, Hattori T, Singh VK, McGeer EG. Cholinergic systems in extrapyramidal function, En: Yahr MD, editor. The Basal Ganglia. New York: Raven Press; 1976. p. 213-26.
16.- Duvoisin RC. Cholinergic-anticholinergic antagonism in parkinsonism. Arch Neurol 1967; 17: 124-36.
17.- Fahn S, Burke R, Stern Y, Antimuscarinic drugs in the treatment of movement disorders. En: Aquilonius SM, Gillberg PG, editores. Progress in Brain Research. Amsterdam: Elsevier; 1990. vol. 84. p. 389-97.
18.- Bartholini G. Interaction of striatal dopaminergic, cholinergic, and GABAergic neurons: relation to extrapyramidal function. Trends Pharmacol Sci 1980; 1: 138-40.
19.- Stoof JC, Drukarch B, DeBoer P, Westerink BHC, Groenewegen HJ. Regulation of the activity of striatal cholinergic neurons by dopamine. Neuroscience 1992; 47: 755-70.
20.- DeBoer P, Abercrombie ED. Physiological release of striatal acetylcholine in vivo: modulation by D1 and D2 dopamine receptor subtypes. J Pharmacol Exp Ther 1996; 277: 775-83.
21.- De Boer P, Abercrombie ED, Heeringa M, Westerink BHC. Differential effect of systemic administration of bromocriptine and L-DOPA on the release of acetylcholine from striatum of intact and 6-HODA-treated rats. Brain Res 1993; 608: 198-203.
22.- Bianchine JR. Drogas para la enfermedad de Parkinson; relajantes musculares de acción central. En: Goodman-Gilman A, Goodman LS, Gilman A, editores. Goodman y Gilman Las Bases Farmacológicas de la Terapéutica. Sexta edición. Buenos Aires: Editorial Médica Panamericana; 1981. p. 475-93.
23.- Lang AE, Lozano AM. Parkinson´s disease. Second of two parts. N Eng J Med 1988; 339: 285-94.
24.- Calne DB. Treatment of Parkinson´s disease. N Eng J Med 1993; 329: 1021-7.
25.- Fahn S, Medical treatment of Parkinson's disease. J Neurol 1998; 245 (Suppl. 3):15-24.
26.- Nishiyama K, Mizuno T, Sakuta M, Kurisaki H. Chronic dementia in Parkinsons disease treated by anticholinergic agents. Neuropsychological and neuroradiological examination. Adv Neurol 1993; 60: 479-83.
27.- Van Spaendonck K, Berger H, Horstink M, Bytenhuijs E, Cools A. Impaired cognitive shifting in Parkinsonian patients on anticholinergic therapy. Neuropsychologia 1993; 31: 407-11.
28.- Pondal M, Del Ser T, Bermejo F. Anticholinergic therapy and dementia in patients with Parkinson´s disease. J Neurol 1996; 243: 543-46.
29.- Bédard MA, Pillon B, Dubois B, Duchesne N, Masson H, Agid Y. Acute and long-term administration of anticholinergics in Parkinsons disease: specific effects on the subcortico-frontal syndrome. Brain Cogn 1999; 40: 289-313.
30.- Richardson P, Hiroshi K, Jenner P. Adenosine A2A receptor antagonists as new agents for the treatment of Parkinson´s disease. Trends Pharmacol Sci 1997; 18: 338-44.
31.- Ferré, S., Popoli, B., Giménez-Llort, L., Rimondini, R., Müller, C.E., Strömberg, I., Ögren, S.O. and Fuxe, K. Adenosine/dopamine interaction: implications for the treatment of Parkinson’s disease, Parkinsonism Relat Disord 2001; 7:235-41.
32.- Rall WT. Estimulantes del sistema nervioso central; las xantinas. En: Goodman-Gilman A, Goodman LS, Gilman A, editores. Goodman y Gilman Las Bases Farmacológicas de la Terapéutica. Sexta edición. Buenos Aires: Editorial Médica Panamericana; 1981. p. 587-601.
33.- Fredholm BB, Battig K, Holmén J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 1999; 51: 83-133.
34.- Fisone G, Borgkvist A, Usiello A. Caffeine as a psychomotor stimulant: mechanism of action. CMLS Cell Mol Life Sci 2004; 61: 857-72.
35.- Snel J, Tieges Z, Lorist MM. (2004) Effects of caffeine on sleep and wakefulness: an update. En: Nehlig A, editor. Cofee, Tea, Chocolate and the Brain. Boca Raton: CRC Press; 2004. p. 13-33.
36.- Ferré S, Fredholm B, Morelli M, Popoli P, Fuxe K. Adenosine-Dopamine receptor-interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 1997; 20: 482-7.
37.- Daly JW, Fredholm BB. Mechanisms of action of caffeine on the nervous system, En: Nehlig A, editor. Cofee, Tea, Chocolate and the Brain. Boca Raton: CRC Press; 2004. p. 1-11.
38.- Daly JW, Shi D, Nikodijeviæ O, Jacobson K. The role of adenosine receptors in the central action of caffeine. En: Gupta B, Gupta U, editores. Caffeine and Behavior: Current Views and Research Trends. Boca Raton: CRC Press; 1999. p. 1-16.
39.- Fredholm BB, Lindström K. Autoradiographic comparison of the potency of several structurally unrelated adenosine receptor antagonists at adenosine A1 and A2A receptors. Eur J Pharmacol 1999; 380: 197-202.
40.- Boissier J, Simon P. Action de la caffeine sur la motilitée spontanée de la souris. Arch Int Pharmacodyn Thér 1965; 158: 212-21.
41.- Zahniser N, Simosky K, Mayfield D, Negri C, Hanania T, Larson G, et al. Functional uncoupling of adenosine A2A receptors receptors and reduced response to caffeine in mice lacking dopamine D2 receptors. J Neurosci 2000; 20: 5949-57.
42.- Chen J, Moratalla R, Impagnatiello F, Grandy D, Cuellar B, Rubinstein M, et al. The role of the D2 dopamine receptor (D2R) in A2A adenosine receptor (A2AR)-mediated behavioral and cellular responses as revealed by A2A and D2 receptor knockout mice. Proc Natl Acad Sci USA 2001; 98: 1970-5.
43.- Waldeck B. Sensitization by caffeine of central catecholamine receptors. J Neurochem 1973; 33: 999-1005.
44.- Popoli P, Caporali MG, Carolis AS. Akinesia due to catecholamine depletion in mice is prevented by caffeine: further evidence for an involvement of adenosinergic system in the control of motility. J Pharm Pharmacol 1990; 43: 280-1.
45.- Casas M, Ferré S, Cobos A, Grau JM, Jané F. Relationship between rotational behaviour induced by apomorphine and caffeine in rats with unilateral lesion of the nigrostriatal pathway. Neuropharmacology 1989; 28: 407-9.
46.- Casas M, Prat G, Robledo P, Barbanoj M, Kulisevsky J, Jané F. Repeated co-administration of caffeine and bromocriptine prevents tolerance to the effects of caffeine in the turning behavior animal model. Eur Neuropsychopharmacol 1999; 9: 515-21.
47.- Griebel G, Saffroy-Spittler M, Misslin R, Remmy D, Vogel E, Bourguignon J. Comparison of the behavioral effects of an adenosine A1/A2-receptor antagonist, CGS15943A, and an A1-selective antagonist, DPCPX. Psychopharmacol 1991;103: 541-4.
48.- Svenningsson P, Nomikos G, Ongini E, Fredholm BB, Antagonism of adenosine A2A receptors undelies the behavioural activating effect of caffeine and is associated with reduced expression of messenger RNA for NGFI-A and NGFI-B in caudate-putamen and nucleus accumbens. Neuroscience 1997; 79: 753-64.
49.- Kirkpatrick K, Richardson P. Adenosine receptor-mediated modulation of acetylcholine release from rat striatal synaptosomes. Br J Pharmacol 1993; 11: 949-54.
50.- Kirk I, Richardson P. Adenosine A2a receptor-mediated modulation of striatal [3H]GABA and [3H]acetylcholine release. J Neurochem 1994; 62: 960-6.
51.- Kurokawa M, Koga K, Kase H, Nakamura J, Kuwana Y. Adenosine A2A receptor-mediated modulation of striatal acetylcholine release in vivo. J Neurochem 1996; 66: 1882-8.
52.- Moo-Puc RE, Góngora-Alfaro JL, Alvarez-Cervera FJ, Pineda JC, Arankowsky-Sandoval G, Heredia-López F. Caffeine and muscarinic antagonists act in synergy to inhibit haloperidol-induced catalepsy. Neuropharmacology 2003; 45: 493-503.
53.- Moo-Puc RE, Villanueva-Toledo J, Arankowsky-Sandoval G, Alvarez-Cervera F, Góngora-Alfaro JL, Treatment with subthreshold doses of caffeine plus trihexyphenidyl fully restores locomotion and exploratory activity in reserpinized rats. Neurosci Lett 2004; 367: 327-31.
54.- Ross RT. Drug-induced Parkinsonism and other movement disorders. Can J Neurol Sci 1990; 17: 155-62.
55.- Boulay D, Depoortere R, Oblin A, Sanger DJ, Schoemaker H, Perrault G. Haloperidol-induced catalepsy is absent in dopamine D2, but maintained in dopamine D3 receptor knockout-mice. Eur J Pharmacol 2000; 391: 63-73.
56.- Colpaert FC. Pharmacological characteristics of tremor, rigidity and hypokinesia induced by reserpine in rat. Neuropharmacology 1987; 26: 1431-40.
57.- Trugman JM, James, CL. Rapid development of dopaminergic supersensitivity in reserpine treated rats demonstrated with 14C-2-deoxyglucose autoradiography. J Neurosci 1992; 12: 2875-9.
58.- Naudon L, Leroux-Nicollet I, Raisman-Vozari R, Botton D, Costentin J., Time-course of modifications elicited by reserpine on the density and mRNA synthesis of the vesicular monoamine transporter, and on the density of the membrane dopamine uptake complex. Synapse 1995; 21:29-36.
59.- Cerbone A, Sadile AG. Behavioral habituation to spatial novelty: interference and noninterference studies. Neurosci Biobehav Rev 1994; 18: 497-518.
60.- Holtzman SG. Complete, reversible, drug-specific tolerance to stimulation of locomotor activity by caffeine. Life Sci 2983; 33: 779-87.
61.- Finn IB, Holtzman SG. Tolerance to caffeine-induced stimulation of locomotor activity in rats. J Pharmacol Exp Ther 1986; 238: 542-6.
62.- Nehlig A. Dependence upon cofee and caffeine: an update. En: Nehlig A, editor. Cofee, Tea, Chocolate and the Brain. Boca Raton: CRC Press; 2004. p. 133-46.
63.- Smith A. Effects of caffeine on human behavior. Food Chem Toxicol 2002; 40: 1243-55.
64.- Smith BD, Osborne A, Mann M, Jones H, White T. Arousal and behavior: biopsychological effects of caffeine. En: Nehlig A, editor. Cofee, Tea, Chocolate and the Brain. Boca Raton: CRC Press; 2004. p. 35-52.
65.- Shoulson I, Chase TN. Caffeine and the antiparkinsonian response to levodopa or piribedil. Neurology 1975; 25: 722-4.
66.- Kartzinel R, Shoulson I, Calne DB. Studies with bromocriptine: III. Concomitant administration of caffeine to petients with idiopathic parkinsonism. Neurology 1976; 26: 741-3.
67.- Gerlach M, Foley P, Riederer R. The relevance of preclinical studies for the treatment of Parkinson's disease. J Neurol 2003; 250 (Suppl. 1): 31-4.
68.- Simon P, Dupuis R, Costentin J. Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav Brain Res 1994; 61: 59-64.
69.- Nehlig A. Cerebral energy metabolism and blood flow: useful tools for the understanding of the behavioral effects of caffeine. En: Gupta B, Gupta U, editores. Caffeine and Behavior: Current Views and Research Trends. Boca Raton: CRC Press; 1999. p. 31-47.
70.- Nehlig A, Boyet S. Dose-response study of caffeine effects on cerebral functional activity with a specific focus on dependence. Brain Res 2000; 858: 71-7.
71.- Villanueva-Toledo J, Moo-Puc RE, Góngora-Alfaro JL. Selective A2A, but not A1 adenosine antagonists enhance the anticataleptic action of trihexyphenidyl in rats. Neurosci Lett 2003; 346: 1-4.
72.- Fuxe K, Ferré S, Zoli M, Agnati LF. Integrated events in central dopamine transmission as analyzed at multiple levls. Evidence for intramembrane A2A/dopamine D2 and adenosine A1/dopamine D1 receptor interactions in the basal ganglia. Brain Res Rev 1998; 26: 258-73.
73.- Svenningsson P, Fisone G, Fredholm B. Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog Neurobiol 1999; 59: 355-96.
74.- Richardson PJ, Dixon AK, Lee K, Bell MI, Cox PJ, Williams R, et al. Correlating physiology with gene expression in striatal cholinergic neurones. J Neurochem 2000; 74: 839-46.
75.- Mandhane SN, Chopde CT, Ghosh AK. Adenosine A2 receptors modulate haloperidol-induced catalepsy in rats. Eur J Pharmacol 1997; 328: 135-41.
76.- Vellucci SV, Sirinathsinghji DJS, Richardson PJ. Adenosine A2 receptor regulation of apomorphine-induced turning in rats with unilateral striatal dopamine denervation. Psychopharmacology 1993; 111: 383-8.