2017, Número 05
<< Anterior Siguiente >>
Ginecol Obstet Mex 2017; 85 (05)
Incidencia y origen parental de las aneuploidias en blastocistos: comparación entre dos centros de reproducción asistida en México
Sánchez-Usabiaga RA, González-Becerra JE, Vera-Aguado MG, Ramírez EG, Durand-Montaño C
Idioma: Español
Referencias bibliográficas: 29
Paginas: 289-297
Archivo PDF: 205.51 Kb.
RESUMEN
Objetivo: determinar la incidencia y origen de las aneuploidias en blastocistos de dos centros mexicanos de reproducción asistida.
Materiales y Métodos: estudio de cohorte, retrospectivo, efectuado entre los meses de enero de 2014 a diciembre de 2015 de blastocistos de día 5 y 6 obtenidos durante tratamientos de fecundación
in vitro y analizados con el tamizaje genético previo a la implantación, en su variante de microarreglos de polimorfismo de nucleótido único (SNP
microarrays) con el algoritmo
Parental Support (Natera, USA), que permite evaluar la ploidía de los 24 cromosomas. Comparación de variables continuas: T de Student y categóricas χ
2.
Resultados: se analizaron 450 blastocistos de 80 pacientes. En el centro A: 132 blastocistos fueron de día 5 y 108 de día 6. En el centro B: 94 blastocistos fueron de día 5 y 116 de día 6. Las pacientes del centro A tuvieron mayor edad materna (37.3 ± 3.8 vs 32.4 ± 5.6; p‹0.05). La incidencia total de blastocistos con aneuploidias fue similar en ambos centros; al diferenciar entre embriones de día 5 y día 6 sí hubo diferencia. El centro A reportó aumento de blastocistos aneuploides de día 6
vs blastocistos de día 5 (61.1
vs 36.3%; p‹0.05). En el centro B la incidencia de embriones aneuploides fue similar entre blastocistos de día 5 y día 6 (48.9
vs 43.1; p
› 0.05). El origen de las aneuploidias fue, principalmente, materno (centro A, 68.7%; centro B, 60.75%) seguido por origen mixto (centro A, 19.65%; centro B, 28.1%) y, finalmente, origen paterno (centro A, 11.6%; centro B, 11.1%).
Conclusiones: la incidencia de aneuploidias embrionarias entre embriones de día 5 y día 6 fue diferente entre centros. El origen fue, principalmente, materno, seguido de mixto y finalmente paterno.
REFERENCIAS (EN ESTE ARTÍCULO)
Vanneste E, Voet T, Le Caignec C, Ampe M Koning P, Melotte C, Debrock S, Amyere M, Vikkula M, Schuit F, Fryns J, Verbeke G, DHooghe T, Moreau Y, Chromosome instability is common in human cleavage-stage embryos. Nature Medicine, 2009; 15 (5): 577-583.
Demko Z, Simon A, McCoy R, Petrov D, Rabino M, Effects of maternal age on euploidy in a large cohort of embryos analyzed with 24-chromosome single-nucleotide polymorphioms- based preimplantation genetic screening, Fertility and Sterility, 2016; 105 (5): 1307-1313.
Baart E, Martini E, Berg L, Macklon N, Galjaard R Fauser B, Opstal D, Preimplantation genetic screening reveal a high incidence of aneuploidy and mosaicism in embryos from young woman undergoing IVF, Human Reproduction, 2006; 1: 223-233.
Yang Z, Liu J, Collins G, Salem S, Liu X, Lyle S, Peck A, Sills E, Salem R, Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: results from a randomized pilot study, Molecular Cytogenetics, 2012; 5 (24): 1-8.
Menasha J, Levy B, Hirschhorn K, Kardon NB. Incidence and spectrum of chromosome abnormalities in spontaneous abortions: new insights from a 12-year study. Genetics in Medicine, 2005; 7: 251–63.
Barbash S, Frumkin T, Malcov M, Yaron Y, Cohen T, Azem F, Amit A, Ben D, Preimplantation aneuploid embryos undergo selft-correction in correlation with their developmental potential, Fertility ans Sterility, 2009; 92 (3): 890-896.
Taylor T, Patrick J, Gitlin S, Wilson J, Crain J, Griffin D, Comparison of aneuploidy, pregnancy and live birth rates between day 5 and day 6 blastocysts, Reproductive Bio- Medicine Online, 2014; 29: 305-310.
Su Y, Jian-jun L, Wang C, Haddad G, WEI-Hua W, Aneuploidy analysis in day 7 human blastocysts produced by in vitro fertilization, Reproductive Biology and Endocrinology, 2016: 14 (20); 1-7.
Piccolomini M, Nicolielo M, Bonetti T, Motta E, Serafini P, Alegretti J, Does slow embryo development predict a higt aneuploidy rate on trophectoderm biopsy?, Reproductive BioMedicine online, 2016: 33 (3); 398-403.
Kroener L, Ambartsumyan G, Briton C, Dumesic D, Surrey M, Munne S, Hill D, The effect of timing of embryonic progression on chromosomal abnormality, Fertility and Sterility, 2012: 98 (4); 876-880.
Campbell I, Stewart J, James R, Lupski J, Stankiewicz P, Olofsson P, Shaw C, Parent of origin, mosaicism, and recurrence risk: probabilistic modeling explains the broken symmetry of transmission genetics, The American Journal of Human Genetics, 2014: 95; 345-359.
Tylor T, Gitlin S, Patrick J, Crain J, Wilson J, Griffin D, The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans, Human Reproduction Update, 2014: 20 (4); 571-581.
Munne S, Held K, Magli C, Ata B, Wells D, Fragouli E, Baukloh V, Fischer R, Gianaroli L, Intra-age, intercenter, and intercycle differences in chromosome abnormalities in oocytes, Fertility and Sterility, 2012: 97 (4); 935-942.
Hassold T, Hall H, Hunt P, The origin of human aneuploidy: where we have been, where we are going, Human Molecular Genetic, 2007: 16 (2): R203-R208.
Robinson W, Mc Fadden D, Stephenson M, The origin of abnormalities in recurrent aneuploidy/polyploidy, American Society of Human Genetics, 2001; 69 (6); 1245-1254.
Massie J, Shahine L, Milki A, Westphal L, Lathi R, Ovarian stimulation and the risk of aneuploid conceptions, Fertility and Sterility, 2011: 95 (3); 970-972.
Munné S, Magli C, Adler A, Wright G, Boer K, Mortimer D, Ticker M, Cohen J, Gianaroli L, Treatmet-related chromosome abnormalities in human embryos, Human Reproduction, 1997: 12 (4); 780-784.
Telli C, Mehmet E, Nuray B, Yirmibes M, Mesut O, Ahmet E, Onur K, Mustafa C, Gülsün K, Does ovulation induction increase the risk of aneuploid conception? comparison of first trimester miscarriages after FSH stimulated cycles and naturally conceived cycles, International Journal of Womens Health and Reproduction Sciences, 2014: 2 (4); 225-228.
Baart E, Martini E, Eijkemans M, Van Opstal D, Beckers N, Verhoeff A, Macklon N, Fauser B, Milder ovarian stimulation for in vitro fertilization reduces aneuploidy in the human preimplantation embryo: a randomized controlled trial, Human Reproduction, 2007: 22 (4); 980-988.
Swain J, Carrel D, Cobo A, Meseguer M, Rubio C, Smith G, Optimizing the culture environment and embryo manipulation to help maintain embryo developmental potential, Fertility and Sterility, 2016: 105 (3); 571-587.
Sills E, Li, Frederick J, Khoury C, Potter D, Determining parental origin of embryo aneuploidy analysis of genetic error observed in 305 embryos derived from anonymous donor oocyte IVF cycles, Molecular Cytogenetics, 2014; 7 (68): 1-8.
Alonso Á, Bermejo S, Hernández R, Ayala R, González A,Grether P, Diagnóstico citogénetico en aborto espontáneo del primer trimestre, Ginecología y Obstetricia de México, 2011: 79 (12); 779-784.
Chiang T, Schultz R, Lampson M, Meiotic origins of maternal age-related aneuploidy, Biology of Reproduction, 2012; 86 (1): 1-7.
Hassold T, Hunt P, To err (meioticcaly) is human: the genesis of human aneuploidy, Nature Reviews Genetics, 2001: 2; 280-29.
Rabinowitz M, Ryan A, Gemelos G, Hill M, Baner J, Cinnioglu C, Bamjevic M, Potter D, Petrov D, Demko Z, Origins and rate of aneuploidy in human blastomeres, Fertility and Sterility, 2011; 97 (2): 395-401.
López A, Bermejo S, Hernández R, Ayala R, González del Ángel A, González P, Diagnóstico citogenético en aborto espontáneo del primer trimestre, Ginecología y Obstetricia de México 2011:79; 779-784.
Capalbo A, Ubaldi F, Rienzi L, Scott R, Treff N, Detecting mosaicism in trophectoderm biopsies: current challenges and future possibilities, Human Reproduction, 2016: doi:10.1093/humrep/dew250.
Johnson DS, Cinnioglu C, Ross R, Filby A, Gemelos G, Hill M, Ryan A, Smotrich D, Rabinowitz M, Murray MJ, Comprehensive analysis of karyotypic mosaicism between trophectoderm and inner cell mass, Molecular Human Reproduction, 2010: 16 (12); 944-949.
Rabinowitz M, Pettersen B, Le A, Gemelos G, Tourgeman D, DNA fingerprint confirmation of healthy livebirth following PGS results indicating trisomy 3 of paternal origin and likely embryo and likely embryo mosaicism, Presented at the Annual Meeting of the Pacific Coast Reproductive Society, April 13-17, 2011; Rancho Mirage, AC.