2017, Número 3
<< Anterior Siguiente >>
Med Crit 2017; 31 (3)
Utilidad de los parámetros gasométricos como predictores de mortalidad en pacientes con choque séptico
Sánchez NVM, Muñoz RMR, Chávez PC, Guerrero II
Idioma: Español
Referencias bibliográficas: 37
Paginas: 128-135
Archivo PDF: 227.49 Kb.
RESUMEN
Objetivos: Describir los parámetros gasométricos de la presión de dióxido de carbono, el déficit de base y saturación venosa central en los pacientes en choque séptico y observar si el cambio entre el valor inicial (T0) y a las 24 horas (T1) influye en su pronóstico.
Material y métodos: Se realizó un estudio observacional y retrospectivo desde marzo de 2014 a julio de 2016 en pacientes mayores de 18 años con diagnóstico de choque séptico. Se midieron SOFA y APACHE II al ingreso, así como las variables derivadas de las gasometrías venosa central y arterial al diagnóstico del choque séptico (T0) y a las 24 horas del manejo inicial (T1).
Resultados: Se incluyeron 39 pacientes: sobrevivientes (n = 25) y no sobrevivientes (n = 14). Al ingreso (T0), hubo diferencias entre ambos grupos en la ΔPCO
2 y ΔPCO
2/Ca-vO
2 (7.2 ± 2.4 versus 8.7 ± 2.0 mmHg, p = 0.05) y (1.7 ± 0.5 versus 2.1 ± 0.9 mmHg/mL, p = 0.05), respectivamente. A las 24 horas (T1), el déficit de base (DB) y la presión arterial media (PAM) mostraron diferencia entre los grupos (-4.5 ± 5.0 versus -9.5 ± 7.7 mEq/L, p = 0.02) y (81 ± 10 versus 70 ± 9 mmHg, p = 0.03). El cambio del déficit de base (ΔDB) entre los valores al ingreso (T0) y a las 24 horas (T1) fue significativo (-4.5 ± 4.1 versus 2.1 ± 6.3 mEq/L, p = 0.001); en la razón ΔPCO
2/Ca-vO
2 (ΔRatio) no hubo diferencia (-0.02 ± 1.2 versus 0.72 ± 1.7 mmHg/mL, p = 0.13) entre los grupos.
Conclusión: Además de la ΔPCO
2 y la razón ΔPCO
2/Ca-vO
2, en este estudio, el déficit de base puede ser una herramienta pronóstica en los pacientes con choque séptico.
REFERENCIAS (EN ESTE ARTÍCULO)
Angus DC (Pitt), van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369(9):840-851. doi: 10.1056/NEJMra1208623.
Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003;348(2):138-150. doi: 10.1056/NEJMra021333.
Abraham E. New definitions for sepsis and septic shock continuing evolution but with much still to be done. JAMA. 2016;315(8):757-759. doi: 10.1001/jama.2016.0290.
Connelly CR, Schreiber MA. Endpoints in resuscitation. Curr Opin Crit Care. 2015;21(6):512-519. doi:10.1097/MCC.0000000000000248.
Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign. Crit Care Med. 2013;41(2):580-637. doi: 10.1097/CCM.0b013e31827e83af.
ProCESS Investigators, Yeali DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370(18): 1683-93. doi:10.1056/NEJMoa1401602.
ARISE Investigators; ANZICS Clinical Trials Group, Peake SL, Delaney A, Bailey M, Bellomo R, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2015;371:1496-1506. doi: 10.1056/NEJMoa1404380.
Sahetya SK, Brower RG. The promises and problems of transpulmonary pressure measurements in acute respiratory distress syndrome. Curr Opin Crit Care. 2016;22(1):7-13. doi: 10.1097/MCC.0000000000000268.
Angus DC, Barnato AE, Bell D, Bellomo R, Chong CR, Coats TJ, et al. A systematic review and meta-analysis of early goal-directed therapy for septic shock: the ARISE, ProCESS and ProMISe Investigators. Intensive Care Med. 2015;41(9):1549-1560. doi:10.1007/s00134-015-3822-1.
Rivers E, Nguyen B, Hastav S. Early goal directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368-1377.
Lamsfus-Prieto JÁ, de Castro-Fernández R, Hernández-García AM, Marcano-Rodríguez G. Valor pronóstico de los parámetros gasométricos del dióxido de carbono en pacientes con sepsis. Una revisión bibliográfica. Rev Esp Anestesiol Reanim. 2016;63(4):220-230. doi:10.1016/j.redar.2015.11.005.
Kanoore Edul VS, Ince C, Dubin A. What is microcirculatory shock? Curr Opin Crit Care. 2015:1. doi:10.1097/MCC.0000000000000196.
Finfer SR, Vincent J-L, Vincent J-L, De Backer D. Circulatory Shock. N Engl J Med. 2013;369(18):1726-1734. doi:10.1056/NEJMra1208943.
Vincent J-L, Ince C, Bakker J. Clinical review: Circulatory shock —an update: a tribute to Professor Max Harry Weil. Crit Care. 2012;16(6):239. doi:10.1186/cc11510.
Mesquida J, Borrat X, Lorente JA, Masip J, Baigorri F. Objetivos de la reanimación hemodinámica. Med Intensiva. 2011;35(8):499-508. doi:10.1016/j.medin.2010.10.007.
Rivers EP, Yataco AC, Jaehne AK, Gill J, Disselkamp M. Oxygen extraction and perfusion markers in severe sepsis and septic shock. Curr Opin Crit Care. 2015;21(5):381-387. doi:10.1097/MCC.0000000000000241.
Teboul J-L, Hamzaoui O, Monnet X. SvO2 to monitor resuscitation of septic patients: let’s just understand the basic physiology. Crit Care. 2011;15(6):1005. doi:10.1186/cc10491.
Mertz D, Kim TH, Johnstone J, Lam PP, Science M, Kuster SP, et al. Populations at risk for severe or complicated influenza illness: systematic review and meta-analysis. BMJ. 2013;347(August):f5061. doi:10.1136/bmj.f5061.
Joosten A, Alexander B, Cannesson M. Defining goals of resuscitation in the critically Ill patient. Crit Care Clin. 2015;31(1):113-132. doi:10.1016/j.ccc.2014.08.006.
Colomina MJ, Guilabert P. Transfusión según cifras de hemoglobina o de acuerdo con objetivos terapéuticos. Rev Esp Anestesiol Reanim. 2015;63(2):65-68. doi:10.1016/j.redar.2015.10.001.
Davis JW, Kaups KL, Parks SN. Base deficit is superior to pH in evaluating clearance of acidosis after traumatic shock. J Trauma. 1998;44(1):114-118. doi:10.1097/00005373-199801000-00014.
Mutschler M, Nienaber U, Brockamp T, Wafaisade A, Fabian T, Paffrath T, et al. Renaissance of base deficit for the initial assessment of trauma patients: a base deficit-based classification for hypovolemic shock developed on data from 16,305 patients derived from the TraumaRegister DGU®. Crit Care. 2013;17(2):R42. doi:10.1186/cc12555.
Privette AR, Dicker RA. Recognition of hypovolemic shock: using base deficit to think outside of the ATLS box. Crit Care. 2013;17(2):124. doi:10.1186/cc12513.
Husain FA, Martin MJ, Mullenix PS, Steele SR, Elliott DC. Serum lactate and base deficit as predictors of mortality and morbidity. Am J Surg. 2003;185(5):485-491. doi:10.1016/S0002-9610(03)00044-8.
Singhal R, Coghill JE, Guy A, Bradbury AW, Adam DJ, Scriven JM. Serum lactate and base deficit as predictors of mortality after ruptured abdominal aortic aneurysm repair. Eur J Vasc Endovasc Surg. 2005;30(3):263-266. doi:10.1016/j.ejvs.2005.04.003.
Hajjar LA, Nakamura RE, de Almeida JP, Fukushima JT, Hoff PM, Vincent JL, et al. Lactate and base deficit are predictors of mortality in critically ill patients with cancer. Clinics (Sao Paulo). 2011;66(12):2037-2042. doi: 10.1590/S1807-59322011001200007.
Mallat J, Vallet B. Difference in venous-arterial carbon dioxide in septic shock. Minerva Anestesiol. 2015;81(4):419-425.
Ospina-Tascón GA, Hernández G, Cecconi M. Understanding the venous-arterial CO2 to arterial-venous O2 content difference ratio. Intensive Care Med. 2016:16-19. doi: 10.1007/s00134-016-4233-7.
Van Beest PA, Spronk PE. Early hemodynamic resuscitation in septic shock: understanding and modifying oxygen delivery. Crit Care. 2014;18(1):111. doi:10.1186/cc13732.
Lamia B, Monnet X, Teboul JL. Meaning of arterio-venous PCO2 difference in circulatory shock. Minerva Anestesiol. 2006;72:597-604.
Groeneveld AB. Interpreting the venous-arterial PCO2 difference. Crit Care Med. 1998;26(6):979-980. doi:10.1097/00003246-199806000-00002.
Mallat J, Pepy F, Lemyze M, Gasan G, Vangrunderbeeck N, Tronchon L, et al. Central venous-to-arterial carbon dioxide partial pressure difference in early resuscitation from septic shock. Eur J Anaesthesiol. 2014;31(7):371-380. doi:10.1097/EJA.0000000000000064.
Mesquida J, Ggruartmonertaulicat GG, Etorrentstaulicat ET, Fbaigorritaulicat FB, Aartigastaulicat AA. Central venous-to-arterial carbon dioxide difference combined with arterial-to-venous oxygen content difference is associated with lactate evolution in the hemodynamic resuscitation process in early septic shock. Crit Care. 2015;19:1-7. doi:10.1186/s13054-015-0858-0.
Hernández LA, López PH, Etulain GJ, Olvera GC, Aguirre JS, Franco Granillo J. Delta de dióxido de carbono para valorar perfusión tisular como predictor de mortalidad en choque séptico. Rev Asoc Mex Med Crit y Ter Int. 2011;25(2):66-70.
Mallat J, Lemyze M, Meddour M, Pepy F, Gasan G, Barrailler S, et al. Ratios of central venous-to-arterial carbon dioxide content or tension to arteriovenous oxygen content are better markers of global anaerobic metabolism than lactate in septic shock patients. Ann Intensive Care. 2016;6(1):10. doi:10.1186/s13613-016-0110-3.
Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, et al. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen consumption in fluid responders. Crit Care Med. 2013;41(6):1412-1420. doi:10.1097/CCM.0b013e318275cece.
Arteaga AT, Zubieta RM, Díaz UWC, Serrudo LS. Relación de la diferencia de presión venoarterial de dióxido de carbono sobre contenido arteriovenoso de oxígeno (DPCO2/Ca-vO2) versus lactato como marcadores pronóstico en pacientes en estado de choque. Rev la Asoc Mex Med Crit y Ter Intensiva. 2016;30(2):119-126.