2017, Número 2
Siguiente >>
Vet Mex 2017; 4 (2)
Quantitative evaluation of osteogenesis through infrared light. Pilot study
Lomelí MPA, González LPA, Lecona BH, Domínguez RR, León HSR, Luna VIX, Domínguez HVM
Idioma: Español/Inglés
Referencias bibliográficas: 18
Paginas: 1-8
Archivo PDF: 544.93 Kb.
RESUMEN
Sin resumen.
REFERENCIAS (EN ESTE ARTÍCULO)
Simpson CR, Kohl M, Essenpreis M, Cope M. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Phys Med Biol. 1998 Sep;43(9):2465-78. doi: 10.1088/0031-9155/43/9/003.
Jawad MM, Husein A, Azlina A, Alam MK, Hassan R, Shaari R. Effect of 940 nm low-level laser therapy on osteogenesis in vitro. J Biomed Opt. 2013;18(12):128001. doi: 10.1117/1.JBO.18.12.128001.
Li L, So-Ling C. Rendering human skin using a multilayer reflection model. Int J Math Comput Simulat. 2009;3(1):44-53.
Huxley AF. 1968. A theoretical treatment of the reflexion of light by multilayer structures. J Exp Biol. 1968:48(1):227-245.
Hébert M, Hersch RD, Becker JM. Compositional reflectance and transmittance model for multilayer specimens. J Opt Soc Am A Opt Image Sci Vis. 2007 Sep;24(9):2628-44. doi: 10.1364/josaa.24.002628.
Rohde SB. Modeling diffuse reflectance measurements of light scattered by layered tissues [Ph.D. Thesis]. [Merced, California (US)]: University of California, Merced; 2014.
Weissing FJ, Huisman J. Growth and competition in a light gradient. J Theor Biol. 1994; 168(3):323-36. doi: 10.1006/jtbi.1994.1113.
Bevilacqua F, Piguet D, Marquet P, Gross JD, Tromberg BJ, Depeursinge C. In vivo local determination of tissue optical properties: applications to human brain. Appl Opt. 1999;38(22):4939-50. doi: 10.1364/AO.38.004939.
Kulikov K. Laser interaction with biological material. Mathematical modelling. New York (US): Springer. 2014, pp. 47-65. doi: 10.1007/978-3-319-01739-6.
Sassaroli A, Fantini S. Comment on the modified Beer-Lambert law for scattering media. Phys Med Biol. 2004;49(14):N255-7.
Wan S, Anderson RR, Parrish JA. Analytical modeling for the optical properties of the skin with in vitro and in vivo applications. Photochem Photobiol. 1981;34(4):493-9. doi: doi.org/10.1111/j.1751-1097.1981.tb09391.x.
Simpson CR, Kohl M, Essenpreis M, Cope M. Near infrared optical properties of ex-vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Phys Med Biol. 1998;43:2465-78.
Laufer J, Simpson CR, Kohl M, Essenpreis, M, Cope M. Effect of temperature on the optical properties of ex-vivo human dermis and subdermis. Phys Med Biol 1998;43:2479-89.
Cook JE. Assessment of tibial fracture healing using dual energy X-ray absorptiometry. [Ms. C. Thesis]. [Durham (UK)]: Durham University. 1993.
Srinivasan R, Kumar D, Singh M. Optical tissue-equivalent phantoms for medical imaging. Trends Biomater. Artif. Organs. 2002;15(2):42-47.
Bjordal JM, Couppé C, Chow RT, Tunér J, Ljunggren EA. A systematic review of low level laser therapy with location-specific doses for pain from chronic joint disorders. Aust J Physiother. 2003;49(2):107-16. doi: 10.1016/ s0004-9514(14)60127-6.
Krawiecki Z, Cysewska-Sobusiak A. Wiczynski G, Odon A. Modeling and measurements of light transmission through human tissues. Bull. Pol. Ac.: Tech. 2008;56(2):147-154.
Lomelí Mejía PA, Rodríguez León CE, Chaires Oria J, Domínguez Hernández VM, Lecona-Butron H, Araujo-Monsalvo VM, Cruz Orea A. Preliminary design of a device to optically evaluate bone consolidation. The Sci Tech, Int J Eng Sci. 2014;2:2-9.