2002, Número 1
Siguiente >>
Gac Med Mex 2002; 138 (1)
Características morfológicas y electrofisiológicas de las neuronas del ganglio vestibular en cultivo
Soto E, Limón A, Ortega A, Vega R
Idioma: Español
Referencias bibliográficas: 34
Paginas: 1-14
Archivo PDF: 197.62 Kb.
RESUMEN
Las neuronas aferentes vestibulares han sido clasi-ficadas en regulares e irregulares con base en su descarga espontánea, excitabilidad y respuesta ante estímulos eléctricos. Estas diferencias han sido atribuidas a las características de la entrada sináptica, sin embargo, se desconoce la participación de las propiedades intrínsecas de las neuronas aferentes en la generación de su patrón de actividad. Para estudiar estas propiedades hemos desarrollado cultivos primarios de las neuronas aferentes vestibulares.
Las células del ganglio vestibular de la rata se cultivaron sobre superficies tratadas con poli-D-lisina o colágeno usando los medios de cultivo L-15 o Neuro-basal®. A las 48 hrs en cultivo las neuronas proyectaron neuritas de longitud variable. Su estructura se estudió usando anticuerpos contra neurofilamentos de 160 kDa de peso molecular. La mayoría de las células tuvieron forma bipolar (63.9 %); también se observaron neuronas monopolares (30.6 %) y multipolares (5.5 %). Con la técnica de fijación de voltaje en la configuración de célula completa se registraron las corrientes iónicas y la respuesta de las células ante estímulos eléctricos. Se caracterizaron las propiedades biofísicas de la corriente de Na+ sensible a tetrodotoxina. Encontramos que las células en cultivo descargan potenciales de acción en respuesta a la estimulación eléctrica, y que generan actividad repetitiva en presencia de 4-aminopiridina. Los resultados nos permiten concluir que el cultivo primario es un modelo biológico adecuado para discernir los mecanismos que determinan las propiedades de descarga de las neuronas aferentes vestibulares.
REFERENCIAS (EN ESTE ARTÍCULO)
Goldberg JM, Fernández C. The vestibular system. In: Handbook of Physiology: The Nervous System: Sensory Systems Part III, Ed. I. Darian-Smith, Bethesda, MD, 1984,977-1022.
deWaele C, Muhlethaler M, Vidal PP. Neurochemistry of the central vestibular pathways. Brain Res. 1995;20:24-46.
Lorente de Nó R. Estudes sur l’anatomie at la physiologie du labyrinthe et du VIII nerf. Deuxième partie. Quelques donnèes au sujet de l’anatomie des organeds sensoriel du labyrinthe. Trab. Lab. Invest. Biol. Univ Madrid 1926;24:53-153.
Fernández C, Baird RA, Goldberg JM. The vestibular nerve of the chinchilla. I. Peripheral innervation patterns in the horizontal and superior semicircular canals. J. Neurophysiol. 1988;60:167-181.
Goldberg JM, Desmadryl G, Baird R, Fernández C. The vestibular nerve of the chinchilla. IV. Discharge properties of utricular afferents. J. Neurophysiol. 1990;63:781-790.
Lysakowski A, Minor LB, Fernández C, Goldberg M. Physiological identification of morphologically distinct afferent classes innervating the cristae ampullares of the squirrel monkey. J. Neurophysiol. 1995;73:1270-1281.
Goldberg JM, Lysakowski A, Fernández C. Morphophysiological and ultrastructural studies in the mammalian cristae ampullares. Hearing Res. 1990;49:89-102.
Goldberg JM, Desmadryl G, Baird R, Fernández C. The vestibular nerve of the chinchilla. V. Relation between afferent discharge properties and peripheral innervation patterns in the utricular macula. J. Neurophysiol. 1990;63:791-804.
Francis HW, Nadol JB Jr. Patterns of innervation of outer hair cells in a chimpanzee: II. Efferent endings. Hearing Res. 1993;64:217-221.
Honrubia V, Hoffman LF, Sitko S, Schwartz IR. Anatomic and physiological correlates in the bullfrog vestibular nerve. J. Neurophysiol. 1989;61:688-701.
Flores A, Cebada J, Soto E. Ionic mechanisms associated with the discharge regularity of vestibular afferent neurons. Soc. Neurosci. Abs. 1996;22:1065.
Boyle R, Carey JP, Higstein SM. Morphological correlates of response dynamics and efferent stimulation in horizontal semicircular canal afferents of the toadfish, Opsanus tau. J. Neurophysiol. 1991;66:1504-1521.
Davis L. Differential distribution of potassium channels in acutely demyelinated, primary-auditory neurons in vitro. J. Neurophysiol. 1996;76:438-447.
Desmadryl G, Chambard JM, Valmier J, Sans A. Multiple voltage-dependent calcium currents in acutely isolated mouse vestibular neurons. Neuroscience. 1997;78:511-522.
Chabbert C, Chambard J, Valmier J, Sans A, Desmadryl G. Voltage activated sodium currents in acutely isolated mouse vestibular ganglion neurones. Neuroreport. 1997;8:1253-1256.
Chambard JM, Chabbert C, Sans A, Desmadryl G. Developmental changes in low and high voltage-activated calcium currents in acutely isolated mouse vestibular neurons. J. Physiol. 1999;518:141-149.
Sokolowski B. Development of excitation in cells of the inner ear. Proceedings of the International Békésy Conference. 1999,41-58
Cebada J. Caracterización de las corrientes iónicas de las neuronas aferentes vestibulares del axolotl (Ambystoma tigrinum). Tesis de Maestría, Instituto de Fisiología de la Universidad Autónoma de Puebla, 1997.
Banker G, Goslin K. Culturing Nerve Cell. Banker G, Goslin K (Eds.) MIT Press. Cambridge Massachusetts, 1991,11-109.
Demêmes D, Raymond J, Atger P, Grill C, Winsky L, Dechesne C. Identification of neuron subpopulations in the rat vestibular ganglion by calbindin-D 28 K, calretinin and neurofilament proteins immunoreactivity. Brain Res. 1992;582:168-172.
Ylikoski J, Pirvola U, Häppölä O. Characterization of the vestibular and spiral ganglion cell somata of the rat by distribution of neurofilament proteins. Acta Otolaryngol. Suppl (Stockh). 1993;503:121-6.
Hamill OP, Marty A, Neher E, Sakman B, Sigworth FJ. Improved patch clamp technique for high resolution current recording from cell and cell free membrane patches. Pflügers Arch. 1981;391:85-100.
Connor JA, Stevens CF. Voltage clamp studies of a transient membrane outward membrane current in gastropod neural somata. J. Physiol. 1971;213:21-30.
Armstrong C, Roberts W. Electrical properties of frog saccular hair cells: distortion by enzimatic dissociation. J. Neurosci. 1998;18:2962-2973.
Rabejac D, Raymond J, Dechesne C. Characterization of different neuron populations in mouse statoacoustic ganglion cultures. Brain Res. 1994;652:249-256.
Lin X. Action potentials and underlying voltage-dependent currents studied in cultured spiral ganglion neurons of the postnatal gerbil. Hearing Res. 1997;108:157-179.
Montcouquiol M, Valat J, Travo C, Sans A. Short-term response of postnatal rat vestibular neurons following brain-derived neuotrophic factor or neurotrophin-3 application. J. Neurosci. Res. 1997;50:443-449.
Zheng JL, Randall RS, Gao WQ. Neurotrophin-4/5, brain-derived neurotrophic factor, and neurotrophin-3 promote survival of cultured vestibular ganglion neurons and protect them against neurotoxicity of ototoxins. 1995; J. Neurobiol. 28:330-340.
Smith C. Cytosqueletal movements and substrate interactions during initiation of neurite outgrowth by sympathetic neurons in vitro. J. Neurosci. 1994;14:384-398.
Fermin C. Neurotransmisión vestibular central. I. componentes y definiciones. En: neurobiología de los sistemas sensoriales. Meza G (Ed.) UNAM, México1995, pp 285-315.
Thornell L, Anikko M, Virtanen I. Cytosqueletal organization of the human inner ear. Acta Otalaryngol. 1987;437:5-27.
Limón A. Ubicación del ganglio vestibular y presencia de NF-160 kDa en neuronas aferentes vestibulares del VIII par craneal del Ambystoma tigrinum. Tesis de Licenciatura, Escuela de Ciencias Químicas de la Universidad Autónoma de Puebla, 1998.
Soto, E. Limón, A. y Vega, R. Morphology and ionic current expression of the rat vestibular ganglion neurons in primary culture. Assoc. Res. Otolaryngol, Abst. 2001;24:21553
Perin P, Soto E, Vega R, Botta L, Masetto S, Zucca G, Valli P. Calcium channels functional roles in the frog semicircular canal. Neuroreport 2000;11:417-420.