2017, Número 2
<< Anterior Siguiente >>
AbanicoVet 2017; 7 (2)
Efecto del consumo de zinc orgánico en la respuesta productiva de la cerda y su camada
Romo-Valdez J, Romo-Rubio J, Barajas-Cruz R, Enríquez-Verdugo I, Silva-Hidalgo G, Montero-Pardo A
Idioma: Español
Referencias bibliográficas: 56
Paginas: 43-59
Archivo PDF: 716.52 Kb.
RESUMEN
Para evaluar la respuesta productiva de la cerda y su camada a la suplementación con zinc orgánico en clima tropical, se realizaron dos experimentos. Exp. 1 (Época fresca). Se utilizaron 46 cerdas Yorkshire x Landrace, asignadas a uno de dos tratamientos (T) en un diseño completamente al azar. T1 (SZn; n = 22); dieta sin adición de Zn a partir de los 35 días de gestación y durante 21 d de lactación; T2 (CZn; n = 24) T1 más la adición de 100 mg de Zn/kg de alimento. Exp. 2 (Época cálida). Se utilizaron 44 cerdas, asignadas al azar a uno de dos T similares al Exp.1: T1 (SZn; n = 25) y T2 (CZn; n = 19). Los resultados fueron analizados por ANDEVA (P ≤ 0.05). Resultados: Exp. 1. El consumo de alimento adicionado con Zn incrementó (P = 0.001) la concentración plasmática de IgG en los cerdos destetados. Exp. 2. El consumo de alimento adicionado con Zn, incrementó (P ‹ 0.05) el espesor de grasa dorsal (EGD) de las cerdas durante la gestación (16.6
vs. 14.8 mm) y disminuyó (P = 0.006) la mortalidad durante la lactancia (11
vs. 26%). Se concluye que el consumo adicional de Zn incrementa el EGD en las cerdas gestantes bajo condiciones de estrés calórico y disminuye la mortalidad de lechones durante la lactancia, y el consumo adicional durante la época fresca incrementa los niveles plasmáticos de IgG en los LD.
REFERENCIAS (EN ESTE ARTÍCULO)
ALONSO-SPILSBURY MD, Mota-Rojas, Villanueva-García D, Martínez-Burnes J, Orozco H, Ramírez-Necoechea R, Mayagoitia AL, Trujillo ME. 2005. Perinatal asphyxia pathophysiology in pig and human: A review. Animal Reproduction Science. 90(1-2):1–30. ISSN: 0378-4320, http://dx.doi.org/10.1016/j.anireprosci.2005.01.007
BALABAN NP, Rudakova NL, Sharipova MR. 2012. Structural and functional characteristics and properties of metzincins. Biochemistry (Moscow). ISSN: 1608-3040, 77(2):119–127. http://dx.doi.org/10.1134/S0006297912020010
BAO YM, M. Choct, Iji PA, Bruerton K. 2007. Effect of organically complexed copper, iron, manganese, and zinc on broiler performance, mineral excretion, and accumulation in tissues. The Journal of Applied Poultry Research. 16:448–455. ISSN: 1537-0437, https://doi.org/10.1093/japr/16.3.448
BATE LA, Hacker RR. 1985. The influence of the sow’s adrenal activity on the ability of the piglet to absorb IgG from colostrum. Canadian Journal of Animal Science. 65(1):77–85. ISSN: 0008-3984, http://dx.doi.org/10.4141/cjas85-008
BAUMGARD LH, Rhoads RP. 2012. Ruminant production and metabolic responses to heat stress. Journal of Animal Science. 90(6):1855–1865. ISSN: 1525- 3163, http://dx.doi.org/10.2527/jas.2011-4675.
BERNABUCCI U, Lacetera N, Baumgard LH, Rhoads RP, Ronchi B, Nardone A. 2010. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal. 4(7):1167–1183. ISSN: 1751-732X, https://dx.doi.org/10.1017/S175173111000090X
BHOWMIK D, Chiranjib KP, Sampath K. 2010. A potential medicinal importance of zinc in human health and chronic disease. International Journal Pharmaceutical and Biomedical Research. 1(1):05-11. ISSN: 2348-0262 https://www.researchgate.net/publication/277014212_A_potential_medicinal_importance_of_zinc_in_human_health_and_chronic_disease
BLECHA F, Kelley KW. 1981. Cold stress reduces the acquisition of colostral immunoglobulin in piglets. Journal of Animal Science. 52:594–600. ISSN: 1525- 3163, http://agris.fao.org/agris-search/search.do?recordID=US19820749155 BORAH S, Sarmah BC, Chakravarty P, Naskar S, Dutta DJ, Kalita D. 2014. Effect of zinc supplementation on serum biochemicals in grower pig. Journal of Applied Animal Research. 42 (2): 244- 248. ISSN: 0971-2119 http://dx.doi.org/10.1080/09712119.2013.824888
BURKEY TE, Skjolaas KA, Minton JE. 2009. BOARD-INVITED REVIEW: Porcine mucosal immunity of the gastrointestinal tract. Journal of Animal Science. 87(4):1493–1501. ISSN: 1525- 3163, http://dx.doi.org/10.2527/jas.2008-1330
CAINE WR, Metzler-Zebeli BU, McFall M, Miller B, Ward TL, Kirkwood RN, Mosenthin R. 2009. Supplementation of diets for gestating sows with zinc amino acid complex and gastric intubation of suckling pigs with zinc-methionine on mineral status, intestinal morphology and bacterial translocation in lipopolysaccharide-challenged early-weaned pigs. Research in Veterinary Science. 86(3):453–462. ISSN: 0034-5288, http://dx.doi.org/10.1016/j.rvsc.2008.10.005. Epub 2008 Dec 4
CHAND N, Naz S, Khan A, Khan S, Khan RU. 2014. Performance traits and immune response of broiler chicks treated with zinc and ascorbic acid supplementation during cyclic heat stress. International Journal of Biometeorology. 58 (10):2153–2157. ISSN: 1432-1254 http://dx.doi.org/10.1007/s00484-014-0815-7
CHASAPIS CT, Loutsidou AC., Spiliopoulou CA, Stefanidou ME. 2012. Zinc and human health: an update. Archives of Toxicology. 86:521–534. ISSN: 0340-5761, http://dx.doi.org/10.1007/s00204-011-0775-1
HAASE H, Rink L. 2009a. The immune system and the impact of zinc during aging. Immunity and Ageing. 6:9. ISSN: 1742-4933, http://dx.doi.org/10.1186/1742-4933-6-9 HAASE H, Rink L. 2009b.Functional significance of zinc-related signalling pathways in immune cells. Annual Review of Nutrition. 29:133–152. ISSN: 1545-4312, http://dx.doi.org/10.1146/annurev-nutr-080508-141119
HANSEN PJ. 2009. Effects of heat stress on mammalian reproduction. Philosophical Transactions of the Royal Society of London B. 364(1534):3341–3350. ISSN: 0080–4614, https://dx.doi.org/10.1098/rstb.2009.0131
HILL GM, Mahan DC, Jolliff JS. 2014. Comparison of organic and inorganic zinc sources to maximize growth and meet the zinc needs of the nursery pig. Journal of Animal Science. 92:1582–1594. ISSN: 1525- 3163, http://dx.doi.org/10.2527/jas2013-6744
HU CH, Song ZH, Xiao K, Song J, Jiao LF, Ke YL. 2014. Zinc oxide influences intestinal integrity, the expressions of genes associated with inflammation and TLR4-myeloid differentiation factor 88 signaling pathways in weanling pigs. Innate Immunity. 20:478–486. ISSN: 17534267, http://dx.doi.org/10.1177/1753425913499947
HUANG SX, McFall M, Cegielski AC, Kirkwood RN. 1999. Effect of dietary zinc supplementation on Escherichia coli septicemia in weaned pigs. Journal of Swine Health and Production. 7:109-111. ISSN: 1537-209X https://www.aasv.org/shap/issues/v7n3/v7n3p109.pdf
HYUN-JU S, Young-Eun C, Taewan K, Hong-In S, In-Sook K. 2010. Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. Nutrition Research and Practice. 4(5):356-361. ISSN: 2005-6168, www.ncbi.nlm.nih.gov/pmc/articles/PMC2981717/pdf/nrp-4-356.pdf
INOUE T. 1981. Possible factors influencing immunoglobulin: A concentration in swine colostrum. American Journal of Veterinary Research. 42:533–536. ISSN: 0002-9645, http://europepmc.org/abstract/med/7271021
ISLAM M, Loots DT. 2007. Diabetes, metallothionein and zinc interations: a review. Biofactors. 29 (4):203-212. ISSN: 1872-8081, http://dx.doi.org/10.1002/biof.5520290404
KAUTOULI M, Melin L, Jensen-Waern M, Wallgren P, Mollby R. 1999. The effect of zinc oxide supplementation on the stability of the intestinal flora with special reference to composition of coliformes in weaned pigs. Journal of Applied Microbiology. 87:564-573. ISSN: 1365-2672, http://dx.doi.org/10.1046/j.1365-2672.1999.00853.x
KELLEHER S, McCormick NH, Velasquez V, Lopez V. 2011. Zinc in specialized secretory tissues: Roles in the pancreas, prostate, and mammary gland. Advances in Nutrition. 2:101–111. ISSN: 2156-5376, http://advances.nutrition.org/content/2/2/101.full.pdf+html
LAGANA C, Ribeiro AML, Kessler A, Kratz LR, Pinheiro CC. 2007. Effect of the supplementation of vitamins and organic minerals on the performance of broilers under heat stress. Revista Brasileira de Ciencia Avícola. 9(1):01–06. ISSN: 1806-9061, http://dx.doi.org/10.1590/S1516-635X2007000100006
LEWIS CRG, Bunter KL. 2011. Effects of seasonality and ambient temperature on genetic parameters for production and reproductive traits in pigs. Animal Production Science. 51:615–626. ISSN, 1836-0939, http://dx.doi.org/10.1071/AN10265
LI Y, Cao Y, Zhou X, Wang F, Shan T, Li Z, Xu W, Li C. 2015. Effects of zinc sulfate pretreatment on heat tolerance of Bama miniature pig under high ambient temperature. Journal of Animal Science. 93:3421–3430. ISSN: 1525- 3163, http://dx.doi.org/10.2527/jas.2015-8910
MACHADO-NETO R, Graves CN, Curtis SE. 1987. Immunoglobulins in piglets from sows heat-stressed prepartum. Journal of Animal Science. 65(2):445–455. ISSN: 1525- 3163, http://dx.doi.org/10.2527/jas1987.652445x
MADER TL, Davis MS, Brown-Brandl T. 2006. Environmental factors influencing heat stress in feedlot cattle. Journal of Animal Science. 84:712-719. ISSN: 1525- 3163, http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1622&context=animalscifacpub
MAGGINI S, Wintergerst ES, Beveridge S, Hornig DH. 2007. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. The British Journal of Nutrition. 1:29–35. ISSN: 1475-2662, http://dx.doi.org/10.1017/S0007114507832971
MAHAN DC, Watts MR, St-Pierre N. 2009. Macro- and micromineral composition of fetal pigs and their accretion rates during fetal development. Journal of Animal Science. 87:2823–2832. ISSN: 1525- 3163, http://www.prairieswine.com/pdf/40184.pdf
MARAI IFM, El-Darawany AA, Fadiel A, Abdel-Hafez MAM. 2007. Physiological traits as affected by heat stress in sheep: a review. Small Ruminant Research. 71:1–12. ISSN: 0921-4488, http://doi.org/10.1016/j.smallrumres.2006.10.003
MÉNDEZ-LUCAS A, Duarte JA, Sunny NE, Satapi S, He TT, Fu X, Bermúdez J, Burguess SC, Perales JC. 2013. PEPCK-M expression in mouse liver potentiates, not replaces, PEPCK-C mediated gluconeogenesis. Journal of Hepatology. 59 (1): 105-113. ISSN: 0168-8278, http://dx.doi.org/10.1016/j.jhep.2013.02.020
MÉNDEZ-LUCAS A, Hyroššová P, Novellasdemunt L, Viñals F, Perales JC. 2014. Mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) is a pro-survival, endoplasmic reticulum (ER) stress response gene involved in tumor cell adaptation to nutrient availability. The Journal of Biological Chemistry. 289 (32): 22090-102. ISSN · 0021-9258, http://dx.doi.org/10.1074/jbc.M114.566927
MING-ZHE L, Jie-Ting H, Yi-Hao T, Syuan-Yian M, Chao-Ming F, Tu-Fa L. 2016. Nanosize of zinc oxide and the effects on zinc digestibility, growth performances, immune response and serum parameters of weanling piglets. Animal Science Journal. 87: 1379–1385. ISSN: 1740-0929, http://dx.doi.org/10.1111/asj.12579
MISTRY HD, Williams PJ. 2011. The importance of antioxidant micronutrients in pregnancy. Oxidative Medicine and Cellular Longevity. ID 841749, 12 pages. ISSN: 1942-0994, http://dx.doi.org/10.1155/2011/841749
MOCCHEGIANI E, Giacconi R, Cipriano C, Malavolta M. 2009. NK and NKT cells in aging and longevity: role of zinc and metallothioneins. Journal of Clinical Immunology. 29:416–425. ISSN: 1573-2592, http://dx.doi.org/10.1007/s10875-009-9298-4
NOLLET L, Van der Klis JD, Lensing M, Spring P. 2007. The Effect of replacing inorganic with organic trace minerals in broiler diets on productive performance and mineral excretion. The Journal of Applied Poultry Research. 16:592–597. ISSN: 1537-0437, https://doi.org/10.3382/japr.2006-00115
NRC (National Research Council). 2012. Nutrient requirements of swine. 11th rev. ed. Natl. Acad. Press, Washington, DC. ISBN: 978-0-309-22423-9
PAYNE RL, Bidner TD, Fakler TM, Southern LL. 2006. Growth and intestinal morphology of pigs from sows fed two zinc sources during gestation and lactation. Journal of Animal Science. 84:2141-214. ISSN: 1525- 3163, http://dx.doi.org/10.2527/jas.2005-627
PEARCE SC, Gabler NK, Ross JW, Escobar J, Patience JF, Rhoads RP, Baumgard LH. 2013. The effects of heat stress and plane of nutrition on metabolism in growing pigs. Journal of Animal Science. 91:2108–2118. ISSN: 1525- 3163, http://dx.doi.org/10.2527/jas.2012-5738
PEARCE SC, Sanz FMV, Torrison J, Wilson ME, Baumgard LH, Gabler NK. 2015. Dietary organic zinc attenuates heat stress–induced changes in pig intestinal integrity and metabolism. Journal of Animal Science. 93:4702–4713. ISSN: 1525- 3163, http://dx.doi.org/10.2527/jas2015-9018
QU H, Donkin SS, Ajuwon KM. 2015. Heat stress enhances adipogenic differentiation of subcutaneous fat depot–derived porcine stromovascular cells. Journal of Animal Science. 93(8):3832–3842. ISSN: 1525- 3163, http://dx.doi.org/10.2527/jas.2015-9074
QU H, Yan H, Lu H, Donkin SS, Ajuwon KM. 2016. Heat stress in pigs is accompanied by adipose tissue–specific responses that favor increased triglyceride storage1. Journal of Animal Science. 94(5):1884–1896. ISSN: 1525- 3163, http://dx.doi.org/10.2527/jas2015-0084 .
RENAUDEAU D, Collin A, Yahav S, de Basilio V, Gourdine JL, R. Collier J. 2012. Adaptation to tropical climate and research strategies to alleviate heat stress in livestock production: A review. Animal. 6(5):707–728. ISSN: 1751-732X, http://dx.doi.org/10.1017/S1751731111002448
RICHARDS JD, Zhao J, Harrell RJ, Atwell CA, Dibner JJ. 2010. Trace Mineral Nutrition in Poultry and Swine. Asian-Australian Journal of Animal Science. 23 (11):1527-1534. ISSN, 1011-2367, http://www.ajas.info/upload/pdf/23-200.pdf
RICHARDS JD, Fisher PM, Evans JL, Wedekind KJ. 2015. Greater bioavailability of chelated compared with inorganic zinc in broiler chicks in the presence or absence of elevated calcium and phosphorus. Open Access Animal Physiology. 7:97-109. ISSN: 1179-2779, https://doi.org/10.2147/OAAP.S83845
SANZ FMV, Pearce SC, Gabler NK, Patience JF. 2014. Effects of supplemental zinc amino acid complex on gut integrity in heat-stressed growing pigs. Animal. 8:43–50. ISSN: 1751-732X, http://dx.doi.org/10.1017/S1751731113001961
SCHLEGEL P, Sauvant D, Jondreville C. 2013. Bioavailabiliy of zinc sources and their interaction with phytates in broilers and piglets. Animal. 7(1):47–59. ISSN: 1751-732X, http://dx.doi.org/10.1017/S1751731112001000
SLY WS, Hu PY. 1995. Human carbonic anhydrases and carbonic anhydrase deficiencies. Annual Review of Biochemistry. 64:375– 401. ISSN: 1545-4509, http://dx.doi.org/10.1146/annurev.bi.64.070195.002111
SONG ZH, Ke YL, Xiao K, Jiao LF, Hong QH, Hu CH. 2015. Diosmectite–zinc oxide composite improves intestinal barrier restoration and modulates TGF-β1, ERK1/2, and Akt in piglets after acetic acid challenge. Journal of Animal Science. 93:1599–1607. ISSN: 1525- 3163, http://dx.doi.org/10.2527/jas.2014-8580
SONI NEETA, Mishra SK, Swain R, Das A, Chichilichi B, Sethy K. 2013. Bioavailability and Immunity Response in Broiler Breeders on Organically Complexed Zinc Supplementatio. Food and Nutrition Sciences. 4: 1293-1300. ISSN: 2157-9458, http://dx.doi.org/10.4236/fns.2013.412166
STEEL GD, Torrie JH. 1985. Bioestadística: Principios y Procedimientos. (2da. Ed.) McGraw-Hill, México, D. F. ISBN: 0-07-060926-8
SWAMYNATHAN S. 2010. Krüppel-like factors: Three fingers in control. Humans Genomics. 4(4):263–270. ISSN: 1479-7364, http://dx.doi.org/10.1186/1479-7364-4-4-263
VALLET JL, Rempel LA, Miles JR, Webel SK. 2014. Effect of essential fatty acid and zinc supplementation during pregnancy on birth intervals, neonatal piglet brain myelination, stillbirth, and preweaning mortality. Journal of Animal Science. 92(6):2422–2432. ISSN: 1525- 3163, https://dx.doi.org/10.2527/jas.2013-7130
ZHANG B, Guo Y. 2009. Supplemental zinc reduced intestinal permeability by enhancing occludin and zonula occludens protein-1 (ZO-1) expression in weaning piglets. The British. Journal of Nutrition. 102:687–693. ISSN: 0007-1145, http://dx.doi.org/10.1017/S0007114509289033
ZHANG HB, Wang MS, Wang ZS, Zhou AM, Zhang XM, Dong XW, Peng QH. 2014. Supplementation dietary zinc levels on growth performance, carcass traits, and intramuscular fat deposition in weaned piglet. Biological Trace Element Research. 161:69-77. ISSN: 1559-0720, http://dx.doi.org/10.1007/s12011-014-0078-5
ZITKA O, Kukacka J, Krizkova S, Huska D, Adam V, Masarik M, Prusa R, Kizek R. 2010. Matrix Metalloproteinases. Current Medicinal Chemistry. 17:3751-3768. ISSN: 0929-8673, http://web2.mendelu.cz/af_239_nanotech/data/pub/Matrix%20Metalloproteinases.pdf