2017, Número 2
<< Anterior Siguiente >>
Rev Cubana Pediatr 2017; 89 (2)
El bajo peso al nacer y la programación temprana de la vida, un problema de actualidad y del futuro
Jiménez GR, Alfonso NL, Peñalver R, Santana PS
Idioma: Español
Referencias bibliográficas: 43
Paginas: 241-251
Archivo PDF: 181.43 Kb.
RESUMEN
El hecho de que el desarrollo fetal pueda ser un factor influyente en el desarrollo humano durante todo el ciclo de la vida ha sido explorado desde la primera mitad del siglo XX, cuando Kermack y otros analizan las tasas históricas de mortalidad en Gran Bretaña y Suiza, y observan que la expectativa de vida estaba determinada por las condiciones existentes durante las etapas tempranas de la vida. Los estudios de Forsdhal, en 1977, determinaron como factor de riesgo cardiovascular los estados de pobreza, seguidos de prosperidad durante la infancia y la adolescencia. Estas observaciones conllevaron a Barker a conformar su hipótesis acerca de la relación entre el bajo peso al nacer y el riesgo cardiovascular, la resistencia insulínica y la diabetes tipo II en la adultez. Aunque no se ha podido demostrar una relación causal única entre el bajo peso al nacer y el desarrollo de las enfermedades crónicas no transmisibles (siendo esta una relación multicausal, tanto los estudios
in vitro como
in vivo), han demostrado que un medio intrauterino deficiente, independiente de su causa, puede incrementar el riesgo de padecer esas enfermedades, al igual de que si persiste el medio adverso durante la infancia y la adolescencia (estados nutrimentales carenciales), se perpetúa el riesgo. El presente reporte tiene el objetivo de analizar algunos aspectos teóricos relacionados con la programación temprana de la vida y su relación con el desarrollo de las enfermedades crónicas no transmisibles, así como su importancia para el médico de familia y el pediatra general en la práctica médica diaria, encaminado a su prevención en etapas ulteriores del desarrollo humano.
REFERENCIAS (EN ESTE ARTÍCULO)
Armitage JA, Khan IY, Taylor PD, Nathanielsz PW, Poston L. Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J Physiol. 2004;561(2):355-77.
Barker DJP. The developmental origins of chronic adult disease. Acta Paediatrica. 2004;93:26-33.
Lucas A. Role of nutritional programming in determining adult morbidity. Arch Dis Child. 1994;71:288-90.
Santos F, Hendrich B, Reik W, Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol. 2002;241:172-82.
Pickard B, Dean W, Engemann S, Bergmann K, Fuermann M, Jung M, et al. Epigenetic targeting in the mouse zygote marks DNA for later methylation: a mechanism for maternal effects in development. Mech Dev. 2001;103:35-47.
Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293:1089-93.
Mather KA, Jorm AF, Parslow RA, Christensen H. Is telomere length a biomarker of aging? A review. J Gerontola Biol Med Sci. 2011;66:202-13.
Bojesen SE. Telomeres and human health. J Intern Med. 2013;274:399-413.
Shalev I, Entringer S, Wadhwa PD, Wolkowitz OM, Puterman E, Lin J, et al. Stress and telomere biology: a lifespan perspective. Psychoneuroendocrinology. 2013;38:1835-42.
Hallows SE, Regnault TR, Betts DH. The long and short of it: the role of telomeres in fetal origins of adult disease. J Pregnancy. 2012;2012:638476.
Kim SH, Kaminker P, Campisi J. Telomeres, aging and cancer: in search of a happy ending. Oncogene. 2002;21:503-11.
Tarry-Adkins JL, Chen JH, Smith NS, Jones RH, Cherif H, Ozanne SE. Poor maternal nutrition followed by accelerated postnatal growth leads to telomere shortening and increased markers of cell senescence in rat islets. FASEB Journal. 2009;23(5):1521-8.
Hanson M1, Godfrey KM, Lillycrop KA, Burdge GC, Gluckman PD. Developmental plasticity and developmental origins of non-communicable disease: theoretical considerations and epigenetic mechanisms. Prog Biophys Mol Biol. 2011;106(1):272-80.
Höfman PL, Regan F, Jackson WE. Premature birth and early insulin resistance. N Engl J Med. 2004;351:2179-86.
Stettler N, Babette SZ, Kumanyika S, Virginia S. Infant Weight Gain and Childhood Overweight Status in a Multicenter, Cohort Study. Pediatrics. 2002;109(2):194-9.
Mathai S, Outfield WS, Derraik JBG. Insulin sensitivity and ß-cell function in adults born preterm and their children. Diabetes. 2012;61:2479-83.
Mathai S, Derraik JBG, Outfield WS. Increassed adiposity in adults born preterm and their children. FLoS ONE. 2013;8:e81840.
Singhal A, Fewtrell M, Cole TJ. Low nutrient intake and early growth for later insulin resistance in adolescents born preterm. Lancet. 2003;361:1089-97.
Bazaes PA, Alegría A, Pittaluga E. Determinants of insulin sensitivity and secretion in very los birth weight children. J Clin Endocrinol Metab. 2004;89:1267-72.
Stettler N. Nature and strength of epidemiological evidence for origins of childhood and adulthood obesity in the first year of life. Int J Obes (London). 2007;31:1035-43.
Soto N, Bazaes RA, Peña V, Iñiguez G, Ong KK, Dunger DB, et al. Insulin sensitivity and secretion are related to catch-up growth in small-for-gestational-age infants at age 1 year: results from a prospective cohort. J Clin Endocrinol Metab. 2003;88:3645-50.
Demerath EW, Reed D, Choh AC, Soloway L, Lee M, Czerwinski SA, et al. Rapid postnatal weight gain and visceral adiposity in adulthood: The Fels Longitudinal Study. Obesity (Silver Spring). 2009;17:2060-6.
Ojeda NO, Grigore D, Alexander BT. Intrauterine growth restriction: Fetal programming of hypertension and kidney disease. Adv Chronic Kidney Dis. 2008;15(2):101-6.
Hoy WE, Rees M, Kile E, Mathews JD, Wang Z. A new dimension to the Barker hypothesis: Low birthweight and susceptibility to renal disease. Kidney International. 1999;56:1072-7.
Mañalich R, Reyes, Herrera M, Melendi C, Fundora I. Relationship between weight at birth and the number and size of renal glomeruli in humans: A histomorphometric study. Kidney International. 2000;58:770-3.
Luyckx VA, Brenner BM. Low birth weight, nephron number, and kidney disease. Kidney International. 2005;68:S68-S77.
Lackland DT, Bendall HE, Osmond C, Egan BM,Barker DJP. Low birth weights contribute to the high rates of early-onset chronic renal failure in the Southeastern United States. Arch Intern Med. 2000;160(10):1472-6.
Vikse BE, Irgens LM, Leivestad T, Hallan S, Iversen BM. Low birth weight increases risk for end-stage renal disease. JASN. 2007;10:1681-9.
de Jong F, Monuteaux MC, van Elburg RM, Gillman MW, Belfort MB. Systematic review and meta-analysis of preterm birth and later systolic blood pressure. Hypertension. 2012;59(2):226-34.
Pocobelli G, Dublin S, Enquobahrie DA, Mueller BA. Birth weight and birth weight for gestational age in relation to risk of hospitalization with primary hypertension in children and young adults. Maternal and Child Health Journal. 2016;20(7):1415-23.
Juonala M, Cheung MM, Sabin MA, Burgner D, Skilton MR, Kähönen M, et al. Effect of birth weight on life-course blood pressure levels among children born premature: the cardiovascular risk in young Finns study. J Hypertens. 2015;33(8):1542-8.
Jornayvaz FR, Vollenweider P, Bochud M, Mooser V, Waeber G, Marques-Vidal P. Low birth weight leads to obesity, diabetes and increased leptin levels in adults: the CoLaus study. Cardiovascular Diabetology. 2016;15:73-9.
Alberti KG, Zimmet P, Shaw J. Metabolic syndrome -a new world- wide definition. A consensus statement from the international diabetes federation. Diabet Med. 2006;23(5):469-80.
Jornayvaz FR, Selz R, Tappy L, Theintz GE. Metabolism of oral glucose in children born small for gestational age: evidence for an impaired whole body glucose oxidation. Metabolism. 2004;53(7):847-51.
Law CM, Barker DJ, Osmond C, Fall CH, Simmonds SJ. Early growth and abdominal fatness in adult life. J Epidemiol Community Health. 1992;46(3):184-6.
Eriksson JG, Kajantie E, Lampl M, Osmond C. Trajectories of body mass index amongst children who develop type 2 diabetes as adults. J Intern Med. 2015;278(2):219-26.
Stansfield BK, Fain ME, Bhatia J, Gutin B, Nguyen JT, Pollock NK. Nonlinear Relationship between birth weight and visceral fat in adolescents. J Pediatr. 2016;174:185-92.
Jornayvaz FR, Vollenweider P, Bochud M, Mooser V, Waeber G, Marques-Vidal P. Lowbirth weight leads to obesity, diabetes and increased leptin levels in adults: the CoLaus study. Cardiovasc Diabetol. 2016 3;15(1):73.
Péneau S, González-Carrascosa R, Gusto G, Goxe D, Lantieri O, Fezeu L, et al. Age at adiposity rebound: determinants and association with nutritional status and the metabolic syndrome at adulthood. Int J Obes (Lond). 2016;40(7):1150-6.
Rolland-Cachera MF, Deheeger M, Maillot M, Bellisle F. Early adiposity rebound: causes and consequences for obesity in children and adults. N J Obes (Lond). 2006 Dec;30(sup 4):S11-7.
Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005;115:e290-e296.
Lifschitz C. Early life factors influencing the risk of obesity. Pediatr Gastroenterol Hepatol Nutr. 2015;18(4):217-23.
Morales C. Distribución de grasa corporal durante el 1er. semestre de vida posnatal en relación con la alimentación empleada [tesis de grado]. Instituto Superior de Ciencias Médicas de La Habana; 2004.