2017, Número 1
<< Anterior Siguiente >>
Revista Cubana de Informática Médica 2017; 9 (1)
Alineación Estática de Prótesis a través de Variables Cinéticas y Métodos de Aprendizaje de Máquina
Luengas CLA, Sánchez PG, Vizcaya GPR
Idioma: Español
Referencias bibliográficas: 36
Paginas: 3-17
Archivo PDF: 443.96 Kb.
RESUMEN
El proceso complejo de la alineación en las prótesis y la no existencia de un modelo predictivo para alineación estática de prótesis transtibiales es el foco de esta investigación.
Objetivo: Obtener un modelo computacional que permita establecer la existencia de la alineación estática de prótesis transtibiales a través de parámetros cinéticos presentes en amputados transtibiales unilaterales.
Métodos: Se realizó la construcción de una base de datos de valores de Centro de Presión (COP) y distribución de presión plantar en amputados medidos en el Servicio de Amputados y Prótesis del Hospital Militar Central, Bogotá, Colombia. Los datos incluyen valores cinéticos medidos con la prótesis en alineación y en desalineación.
Resultados: Se desarrollaron tres modelos computacionales, una red neuronal, una máquina de soporte vectorial y un árbol de decisión, se realizó la comparación del desempeño de los modelos.
Conclusiones: Los modelos que hacen uso de máquinas de soporte vectorial y de árboles de decisión tuvieron mayor desempeño que la red neuronal. De esta forma, se comprueba que la alineación estática se puede llevar a cabo de forma objetiva empleando recursos tecnológicos.
REFERENCIAS (EN ESTE ARTÍCULO)
Landmine and Cluster Munition Monitor. Colombia Casualties and Victim Assistance [página Web en Internet]. Landmine and Cluster Munition Monitor 2014. [Consultado: 1 agosto 2015]. Disponible en: http://www.the-monitor.org/en-gb/reports/2014/colombia/casualties-and-victim-assistance.aspx
Dirección Contra Minas. Víctimas de Minas Antipersonal [página Web en Internet]. Dirección Contra Minas 2014: [aproximadamente 8 pantallas]. [Consultado: 3 octubre 2014]. Disponible en: http://www.accioncontraminas.gov.co/estadisticas/Paginas/victimas-minas-antipersonal.aspx
Barona CM, Calvo SF, Roa D, González B. Colombia y las Minas Antipersonal [página Web en Internet]. UNICEF 2000: [aproximadamente 53 pantallas]. [Consultado: 28 noviembre 2015]. Disponible en : http://www.unicef.org/colombia/pdf/minas.pdf
Tokuno CD, Sanderson DJ, Inglis JT, Chua R. Postural and movement adaptations by individuals with a unilateral below-knee amputation during gait initiation. Gait Posture 2003 Dec;18(3):158–169.
Pinzur MS, Cox W, Kaiser J, Morris T, Patwardhan A, Vrbos L. The effect of prosthetic alignment on relative limb loading in persons with trans-tibial amputation: a preliminary report. J Rehabil Res Dev 1995;32(4):373–378.
Zahedi MS, Spence WD, Solomonidis SE, Paul JP. Alignment of lower-limb prostheses. J Rehabil Res Dev 1986 Apr;23(2):2–19.
Boone D, Kobayashi T, Chou TG, Arabian AK, Coleman KL, Orendurff MS, et al. Influence of malalignment on socket reaction moments during gait in amputees with transtibial prostheses. Gait Posture Elsevier B.V 2012 Nov 20;37(4):620–626.
Nederhand MJ, Van Asseldonk EHF, Der Kooij H Van, Rietman HS. Dynamic Balance Control (DBC) in lower leg amputee subjects; Contribution of the regulatory activity of the prosthesis side. Clin Biomech. 2012;27(1):40–45.
Gauthier-Gagnon C, Gravel D, St-Amand H, Murie C, Goyette M. Changes in ground reaction forces during prosthetic training of people with transfemoral amputations: A pilot study. J Prosthetics Orthot 2000;4–9.
Murphy E. The fitting of below knee prostheses. En: Klopsteg PE, Wilson PD, editors. Human limbs and their substitutes. NewYork: McGraw-Hill, 1954:693–702.
Fernie G. Biomechanics of Gait and Prosthetic Alignment. En: Kostuik JP, Gillespie R, editores. Amputation surgery and rehabilitation: The Toronto experience. New York: Churchill Livingstone, 1981: 259–265.
Hannah RE, Morrison JB, Chapman AE. Prostheses alignment: effect on gait of persons with below-knee amputations. Arch Phys Med Rehabil. 1984;65(4):159–162.
Mizrahi J, Susak Z, Seliktar R, Najenson T. Alignment procedure for the optimal fitting of lower limb prostheses. J Biomed Eng. 1986;8(3):229–234.
James W V. Principles of limb fitting and prostheses. Annals of the Royal College of Surgeons of England; 1991;73(3):158–162.
Chaudhry H, Findley T, Quigley KS, Bukiet B, Ji Z, Sims T, et al. Measures of postural stability. J Rehabil Res Dev. 2004;41(5):713–720.
Kapp S, Cummings D. Transtibial Amputation Prosthetic Management. En: Smith DG, Bowker HK, Michael JW, editores. Atlas of Limb Prosthetics: Surgical, Prosthetic, and Rehabilitation Principles. 2nd ed. American Academy of Orthopedic Surgeons. St Louis:Mosby 1992:453-478.
Kobayashi T, Orendurff MS, Zhang M, Boone D. Effect of transtibial prosthesis alignment changes on out-of-plane socket reaction moments during walking in amputees. J Biomech, 2012 Oct 11;45(15):2603–2609.
Chaudhry H, Bukiet B, Ji Z, Findley T. Measurement of balance in computer posturography: Comparison of methods-A brief review. J Bodyw Mov Ther. 2011;15(1):82–91.
Tibarewala DN, Ganguli S. Static weight-bearing patterns of below-knee amputees using patellar-tendon-bearing prostheses. J Biomed Eng. 1982;4(1):55–61.
Domingos P. A few useful things to know about machine learning. Commun ACM. 2012;55(10):78-88.
Araujo B. Aprendizaje Automático: Conceptos Básicos y Avanzados: Aspectos Prácticos utilizando el software Weka. Mexico: PRENTICE-HALL, 2006.
Bishop CM. Pattern Recognition and Machine Learning. Vol. 4. Singapur: Springer, 2006.
Alpaydın E. Introduction to machine learning. 2 ed. Cambridge: MIT, 2014.
Pyle D. Business Modeling and Data Mining. San Francisco: Morgan Kaufmann Publishers, Elsevier, 2003.
Pyle D. Data preparation for data mining. San Francisco: Morgan Kaufmann Publishers, Inc, 1999.
Ferreyra M. Data Mining basado en Teoría de la Información [Página Web en Internet]. Powerhouse; 2007: [aproximadamente 26 pantallas].[Consultado: 20 agosto 2015]. Disponible en: http://powerhousedm.blogspot.com/
Amato F, López A, Peña-Méndez EM, Vaňhara P, Hampl A, Havel J. Artificial neural networks in medical diagnosis. J Appl Biomed 2013;11:47–58.
Schöllhorn WI. Applications of artificial neural nets in clinical biomechanics. Clin Biomech. 2004;19(9):876–898.
De la Hoz Manotas AK, Martínez-Palacio UJ, Mendoza-Palechor FE. Técnicas de ML en medicina cardiovascular. Memorias 2013;11(20):41–46.
Huang C-J, Wang Y-W, Huang T-H, Lin C-F, Li C-Y, Chen H-M, et al. Applications of machine learning techniques to a sensor-network-based prosthesis training system. Appl Soft Comput 2011 Apr;11(3):3229–3237.
Novel.de. The pedar® system [Página Web en Internet]. Novel.de. [aproximadamente 8 pantallas][Consultado: 11 mayo 2014]. Disponible en: http://www.novel.de/novelcontent/pedar
Kimmeskamp S, Hennig EM. Heel to toe motion characteristics in Parkinson patients during free walking. Clin Biomech 2001;16(9):806–812.
Kellis E. Plantar pressure distribution during barefoot standing, walking and landing in preschool boys. Gait Posture. 2001;14:92–97.
Shannon CE. A mathematical theory of communication. Bell Syst Tech J 1948 July 27:379–423.
Clark L, Zernicke RF. Balance in lower limb child amputees. Prosthet Orthot Int. 1981 Apr;5(1):11–18.
Luengas LA, Gutierrez MA, Camargo E. Estudio de fuerzas en la bipedestación estática. Visión Electrónica. 2014;8(2):75-79.