2017, Número 1
<< Anterior Siguiente >>
Rev Fac Med UNAM 2017; 60 (1)
Neurobiología de las adicciones
Méndez-Díaz M, Romero TBM, Cortés MJ, Ruíz-Contreras AE, Prospéro-García O
Idioma: Español
Referencias bibliográficas: 63
Paginas: 6-16
Archivo PDF: 742.06 Kb.
RESUMEN
La proporción de usuarios de una droga de abuso que desarrolla
dependencia sólo representa una parte de ellos. Es
decir, hay una proporción de usuarios que no presentan un
trastorno por consumo de sustancias (TCS). Por ejemplo, en
México sólo el 15% de quienes consumen alcohol desarrollan
un trastorno por consumo de alcohol (TCA). Este 15%
sugiere una vulnerabilidad en esta población, por lo que
determinar los mecanismos que predisponen a estos sujetos
a la adicción es indispensable para la prevención o para la
rehabilitación del TCS. Se ha sugerido la participación de
factores genéticos y medioambientales en el desarrollo de
dicha vulnerabilidad al TCS.
Por ejemplo, se ha demostrado que los sujetos que son
psicópatas o sociópatas y que son agresivos, que presentan
falta de atención y son impulsivos, entre otras características
clínicas, presentan comorbilidad con el abuso y dependencia
a sustancias. Por otro lado, se ha observado que existe una
relación entre las experiencias adversas en los primeros años
de vida y el consumo de sustancias de abuso. En estudios
preclínicos, hemos demostrado que las ratas privadas de
cuidado materno en los días posnatales 2 al 16 (DPN2-DPN16),
al llegar a la edad adulta (DPN90) consumen más alcohol
que las que han recibido cuidado materno todo el tiempo.
Además, presentan una desregulación en la expresión de los
receptores para canabinoides del tipo 1 (CB1R) en algunas
zonas del cerebro, por ejemplo, el núcleo accumbens y la
corteza prefrontal.
En breve, podríamos suponer que un sujeto es vulnerable
a tener una adicción si nace psicópata o desarrolla una personalidad
antisocial, o bien, si durante la infancia ha contendido
con situaciones adversas, como son un pobre cuidado
parental o el abuso verbal, físco o sexual. Cabe señalar que
estos no son los únicos factores que han sido asociados a
este trastorno, pero para los fines de esta revisión, sólo discutiremos
esta vulnerabilidad con base en los mecanísmos
epigenéticos que afectan al sistema endocanabinérgico
(seCB) e interfieren con la función del sistema de inhibición
de la conducta.
REFERENCIAS (EN ESTE ARTÍCULO)
United Nations, Office on Drugs and crime. World Drag Report 2007. Disponible en: www.unodc.org.
Juan M, Kuri P, Duran L, Velasco M. Sistema de vigilancia epidemiológica de las adicciones (SISVEA). Informe 2012. México: Secretaria de Salud, Subsecretaria de Prevención y Promoción de la Salud y Dirección General de Epidemiología. 2013.
Villatoro J, Medina-Mora M, Fleiz Bautista C, Moreno López M, Oliva Robles N, Bustos Gamiño M, Amador Buenabad N. El consumo de drogas en México: Resultados de la Encuesta Nacional de Adicciones, 2011. Salud mental. 2012;35(6):447-57.
Comité de expertos de la OMS en farmacodependencia. Disponible en: http//:www.who.int/es/
American Psychiatric Association. Manual diagnóstico y estadístico de los trastornos mentales-DSMV. 2014; Médica Panamericana.
Olds J, Milner P. Positive reinforcement produced by electrical stimulation of the septal area and other regions of rat brain. J Comp Physiol Psychol. 1954;47:419-27-
Koob GF, Le Moal F. What is addiction? En: Neurobiology of addictions. Academic Press; 2005.
Bassareo V, Di Chiara G. Modulation of feeding-induced activation of mesolimbic dopamine transmission by appetitive stimuli and its relation to motivational state. Eur J Neurosci. 1999;11(12):4389-97.
Damsma G, Pfaus JG, Wenkstern D, Phillips AG, Fibiger HC. Sexual behavior increases dopamine transmission in the nucleus accumbens and striatum of male rats: comparison with novelty and locomotion. Behav Neurosci. 1992;106(1):181-91.
Covey DP, Bunner KD, Schuweiler DR, Cheer JF, Garris PA. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids. Eur J Neurosci. 2016. doi: 10.1111/ejn.13248.
Adinoff B. Neurobiologic Processes in Drug Reward and Addiction. Harv Rev Psychiatry. 2004;12(6):305-20.
Volkow ND, Fowler JS, Gatley SJ, Logan J, Wang GJ, Ding YS, Dewey S. PET evaluation of the dopamine system of the human brain. J Nucl Med. 1996;37(7):1242.
George O, Koob GF. Individual differences in prefrontal cortex function and the transition from drug use to drug dependence. Neurosci Biobehav Rev. 2010;35(2):232-47.
Kessler RC, Chiu WT, Demler O, Walters EE. Prevalence, Severity, and Comorbidity of Twelve-month DSM-IV Disorders in the National Comorbidity Survey Replication (NCS-R). Archives of general psychiatry. 2005;62(6):617- 27. doi:10.1001/archpsyc.62.6.617.
Lozano ÓM, Rojas AJ, Fernández Calderón F. Psychiatric comorbidity and severity of dependence on substance users: how it impacts on their health-related quality of life? J Mental Health. 2016;29:1-8.
Thylstrup B, Hesse M. Impulsive lifestyle counseling to prevent dropout from treatment for substance use disorders in people with antisocial personality disorder: A randomized study. Addict Behav. 2016;57:48-54.
Kirisci L, Tarter R, Van yukov M, Reynolds M, Habeych M. Relation between cognitive distortions and neurobehavior disinhibition on the development of substance use during adolescence and substance disorder by young adulthood: a prospective study. Drug Alcohol Depend. 2004;76(2):125-33.
Belin D, Mar AC, Dalley JW, Robbins TW, Everit BJ. High Impulsivity Predicts the Switch to Compulsive Cocaine- Taking. Science. 2008;320(5881):1352-5.
Dalley JW, Mar AC, Economidou D, Robbins TW. Neurobehavioral mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. Pharmacol Biochem Behav. 2008;90(2):250-60.
Grekin ER, Sher KJ, Wood PK. Personality and substance dependence symptoms: modeling substance-specific traits. Psychol Addict Behav. 2006;20(4):415-24.
Wilhelm CJ, Mitchell SH. Rats bred for high alcohol drinking are more sensitive to delayed and probabilistic outcomes. Genes Brain Behav. 2008;7(7):705-13.
Perry J, Carroll M. The role of impulsive behavior in drug abuse. Psychopharmacology. 2008;200(1):1-26.
Wu HC1. The protective effects of resilience and hope on quality of life of the families coping with the criminal traumatization of one of its members. J Clin Nurs. 2011;20(13-14):1906-15.
Nambu A, Tokuno H, Takada, M. Functional significance of the cortico-subthalamo-pallidal hyperdirect pathway. Neurosci Res. 2002;43(2):111-117.
Aron AR, Robbins TW, Poldrack RA. Inhibiton and the right inferior frontal cortex. Trends Cogn Sci. 2004;8(4):170-7.
Aron, AR, Fletcher, P, Bullmore, ET, Sahakian BJ, Robbins TW. Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neurosci. 2003;6(2):115-6.
Barrot M, Sesack SR, Georges F, Pistis M, Hong S, Jhou TC. Braking dopamine systems: a new GABA master structure for mesolimbic and nigrostriatal functions. J Neurosci. 2012;32(41):14094-101.
Proulx CD, Hikosaka O, Malinow R. Reward processing by the lateral habenula in normal and depressive behaviors. Nat Neurosci. 2014;17(9):1146-52.
Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217-238.
Lammel S, Lim BK, Ran C, Huang KW, Betley MJ, Tye KM, et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature. 2012;491(7423):212-7.
Matsumoto M, Hikosaka O. Representation of negative motivational value in the primate lateral habenula. Nat Neurosci. 2009;12(1):77-84.
Bromberg-Martin ES, Matsumoto M, Hikosaka O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron. 2010;68(5):815-34.
Glass M, Dragunow M, Faull R. Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult brain. Neurosci. 1997;77(2):299-318.
Bourdy R, Barrot M. A new control center for dopaminergic systems: pulling the VTA by the tail. Trends Neurosci. 2012;35: 681-90.
Méndez-Díaz M, Caynas Rojas S, Gómez Armas D, Ruiz- Contreras AE, Aguilar-Roblero R, Prospéro-García O. Endocannabinoid/GABA interactions in the entopeduncular nucleus modulates alcohol intake in rats. Brain Res Bull. 2013;91:31-7.
Tirapu-Ustárroz JA, García-Molina A, Luna-Lario P, Roig- Rovira T, Pelegrín-Valero C. [Models of executive control and functions (I)]. Rev Neurol. 2008;46(11):684-92.
Tirapu-Ustárroz Jb, García-Molina A, Luna-Lario P, Roig- Rovira T, Pelegrín-Valero C. [Models of executive control and functions (I)]. Rev Neurol. 2008;46(11):684-92.
Gogtay N, Greenstein D, Lenane M, Clasen L, Sharp W, Gochman P, et al. Cortical brain development in nonpsychotic siblings of patients with childhood-onset schizophrenia. Arch Gen Psychiatry. 2007;64(7):772–80.
Gómez-Pérez E, Ostrosky-Solís F, Próspero-García O. Desarrollo de la atención, la memoria y los procesos inhibitorios: relación temporal con la maduración de la estructura y función cerebral. Rev Neurol. 2003;37(6):561-7.
García-Molina A, Enseñat-Cantallops A, Tirapu-Ustárroz J, Roig-Rovira T. [Maturation of the prefrontal cortex and development of the executive functions during the first five years of life]. Rev Neurol. 2008;48(8):435-40.
Levenson JM, Sweatt JD. Epigenetic mechanisms in memory formation. Nat Rev Neurosci. 2005;6(2):108-18.
Meany MJ, Szyf M. Maternal care as a model for experience- dependent chromatic plasticity? Trends Neurosci. 2005;9:456-63.
Liu D, Diorio J, Day JC, Francis DD, Meaney MJ. Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nat Neurosci. 2000;3:799-806
Francis DD, Kuhar MJ. Frequency of maternal licking and grooming correlates negatively with vulnerability to cocaine and alcohol use in rats. Pharmacol Biochem Behav. 2008;90(3):497-500.
Isengulova AA, Kalmykova ZA, Miroshnichenko IV. The significance of maternal care for the formation of ethanol preference in rats periodically separated from mothers during the first half of the nest period. Bull Exp Biol Med. 2009;147(4):309-93.
Roma P, Rinker J, Serafine K, Chen S, Barr C, Cheng K, Rice KC, Riley AL. Genetic and early environmental contributions to alcohol’s aversive and physiological effects. Pharmacology, Biochemistry & Behavior. 2008;91:134-9. doi: 10.1016/j.pbb.2008.06.022.
Romano-López A1, Méndez-Díaz M, Ruiz-Contreras AE, Carrisoza R, Prospéro-García O. Maternal separation and proclivity for ethanol intake: a potential role of the endocannabinoid system in rats. Neuroscience. 2012;223:296-304.
Romano-López A, Méndez-Díaz M, García FG, Regalado- Santiago C, Ruiz-Contreras AE, Prospéro-García O. Maternal separation and early stress cause long-lasting effects on dopaminergic and endocannabinergic systems and alters dendritic morphology in the nucleus accumbens and frontal cortex in rats. Dev Neurobiol. 2016;76(8):819-31.
Méndez-Díaz M, Herrera-Solís A, Soria-Gómez EJ, Rueda Orozco PE, Prospéro-García O. “Mighty cannabinoids: a potencial pharmacological tool in medicine”. En: Action mechanism of drug abuse and natural reinforces. Edit Research Signpost. 2008:137-57. ISBN:978-81-308-0245-9.
Wilson RI, Nicoll RA, Endocannabinoid signaling in the brain. Science. 2002;296(5568):678-82.
Xi ZX, Peng XQ, Li X, Song R, Zhang HY, Liu QR, et al. Brain cannabinoid CB₂ receptors modulate cocaine’s actions in mice. Nat Neurosci. 2011;14(9):1160-6.
Cravatt BF, Prospéro-García O, Siuzdak G, Gilula NB, Henriksen SJ, Boger DL, Lerner RA. Chemical characterization of a family of brain lipids that induce sleep. Science. 1995;268(5216):1506-9.
Dinh TP, Carpenter D, Leslie FM, Freund TF, Katona I, Sensi SL, et al. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci U S A. 2002;99(16):10819-24.
González S, Cascio MG, Fernández-Ruiz J, Fezza F, Di Marzo V, Ramos JA. Changes in endocannabinoid contents in the brain of rats chronically exposed to nicotine, ethanol or cocaine. Brain Res. 2002;54(1):73-81.
Lallemand F, De Witte P. SR147778, a CB1 cannabinoid receptor antagonist, suppress ethanol preference in chronically alcoholized Wistar rats. Alcohol. 2006;39(3):125-34.
Méndez-Díaz M, Rueda-Orozco PE, Ruiz-Contreras AE, Prospéro-García O. The endocannabinoid system modulates the valence of the emotion associated to food ingestion. Addict Biol. 2012;17(4):725-35.
Méndez-Díaz M, Caynas Rojas S, Gómez Armas D, Ruiz- Contreras AE, Aguilar-Roblero R, Prospéro-García O. Endocannabinoid/GABA interactions in the entopeduncular nucleus modulates alcohol intake in rats. Brain Res Bull. 2013;91:31-7.
Filip M, Golda A, Zanieswska M, McCreary AC, Nowak E, Kolasiewicz W, Przegaliñski E. Involvement of cannabinoid CB1 receptor in drug addiction: effects of rimonabant on behavioral responses induced by cocaine. Pharmacol Rep. 2006;58(6):806-19.
Soria G, Mendizabal V, Touriño C, Robledo P, Ledent C, Parmentier M, et al. Lack CB1 cannabinoid receptor impairs cocaine self-administration. Neuropsychopharmacol. 2005;30(9):1670-80.
Williams CM, Kirkaham TC. Observational analysisi of feeding induced by Delta9-THC and anandamide. Physiol Behav. 2002;76(2);241-50.
Soria-Gomez E, Matia, I, Rueda-Orozco P, Cisneros M, Petrosino S, Navarro L, Prospéro-García O. Pharmacological enhanced of the endocannabinoid system in the nucleus accumbens shell stimulates food intake and increases c-fos expression in the hypothalamus. Br J Pharmacol. 2007;151(7):1109-16
Méndez Díaz M, Ruiz Contreras AE, Prieto Gómez B, Romano A, Caynas S, Prospéro García O. El cerebro, las drogas y los genes. (Parte I) (Brain, Drugs and Genes). Salud Mental. 2010;33(5):451-6.
Van Gaal L, Rissaen A, Scheen AJ, Ziegler O, Rössner S; RIO-Europe Study Group. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk in overweight patients: 1-year experience from the RIO-Europe study. Lancet. 2005;365:1389-97.